forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreference.py
557 lines (491 loc) · 19.3 KB
/
reference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# reference python implementations for C ops
import torch
from .tree_map import tree_flatten, tree_map
from .batch_tensor import _enable_layers
from . import op_properties
from functorch._C import dim as _C
DimList = _C.DimList
from functools import reduce
import operator
# use dict to avoid writing C++ bindings for set
pointwise = set(op_properties.pointwise)
def prod(x):
return reduce(operator.mul, x, 1)
def _wrap_dim(d, N, keepdim):
from . import Dim
if isinstance(d, Dim):
assert not keepdim, "cannot preserve first-class dimensions with keepdim=True"
return d
elif d >= 0:
return d - N
else:
return d
def _dims(d, N, keepdim, single_dim):
from . import Dim
if isinstance(d, (Dim, int)):
return ltuple((_wrap_dim(d, N, keepdim),))
assert not single_dim, f"expected a single dimension or int but found: {d}"
return ltuple(_wrap_dim(x, N, keepdim) for x in d)
def _bind_dims_to_size(lhs_size, rhs, lhs_debug):
from . import DimensionMismatchError
not_bound = tuple((i, r) for i, r in enumerate(rhs) if not r.is_bound)
if len(not_bound) == 1:
idx, d = not_bound[0]
rhs_so_far = prod(r.size for r in rhs if r.is_bound)
if lhs_size % rhs_so_far != 0:
rhs_s = tuple('?' if not r.is_bound else str(r.size) for r in rhs)
raise DimensionMismatchError(f"inferred dimension does not evenly fit into larger dimension: {lhs_size} vs {rhs_s}")
new_size = lhs_size // rhs_so_far
d.size = new_size
elif len(not_bound) > 1:
rhs_s = tuple('?' if not r.is_bound else str(r.size) for r in rhs)
raise DimensionMismatchError(f"cannot infer the size of two dimensions at once: {rhs} with sizes {rhs_s}")
else:
rhs_size = prod(r.size for r in rhs)
if lhs_size != rhs_size:
raise DimensionMismatchError(
f"Dimension sizes to do not match ({lhs_size} != {rhs_size}) when matching {lhs_debug} to {rhs}")
def _tensor_levels(inp):
from . import _Tensor
if isinstance(inp, _Tensor):
return inp._tensor, llist(inp._levels), inp._has_device
else:
return inp, llist(range(-inp.ndim, 0)), True
def _match_levels(v, from_levels, to_levels):
view = []
permute = []
requires_view = False
size = v.size()
for t in to_levels:
try:
idx = from_levels.index(t)
permute.append(idx)
view.append(size[idx])
except ValueError:
view.append(1)
requires_view = True
if permute != list(range(len(permute))):
v = v.permute(*permute)
if requires_view:
v = v.view(*view)
return v
# make a single dimension positional but do not permute it,
# used to do multi-tensor operators where the dim being acted on
# should not physically move if possible
def _positional_no_permute(self, dim, expand_dim=False):
from . import Tensor
ptensor, levels = self._tensor, llist(self._levels)
try:
idx = levels.index(dim)
except ValueError:
if not expand_dim:
raise
idx = 0
ptensor = ptensor.expand(dim.size, *ptensor.size())
levels.insert(0, 0)
idx_batched = 0
for i in range(idx):
if isinstance(levels[i], int):
levels[i] -= 1
idx_batched += 1
levels[idx] = -idx_batched - 1
return Tensor.from_positional(ptensor, levels, self._has_device), idx_batched
def seq(a, b):
from . import Dim
if isinstance(a, Dim) != isinstance(b, Dim):
return False
if isinstance(a, Dim):
return a is b
else:
return a == b
class isin:
def __contains__(self, item):
for x in self:
if seq(item, x):
return True
return False
def index(self, item):
for i, x in enumerate(self):
if seq(item, x):
return i
raise ValueError
class llist(isin, list):
pass
class ltuple(isin, tuple):
pass
empty_dict = {}
@classmethod
def __torch_function__(self, orig, cls, args, kwargs=empty_dict):
from . import _Tensor, TensorLike, Tensor
from .delayed_mul_tensor import DelayedMulTensor
if orig is torch.Tensor.__mul__:
lhs, rhs = args
if isinstance(lhs, _Tensor) and isinstance(rhs, _Tensor) and lhs.ndim == 0 and rhs.ndim == 0:
return DelayedMulTensor(lhs, rhs)
all_dims = llist()
flat_args, unflatten = tree_flatten((args, kwargs))
device_holding_tensor = None
for f in flat_args:
if isinstance(f, _Tensor):
if f._has_device:
device_holding_tensor = f._batchtensor
for d in f.dims:
if d not in all_dims:
all_dims.append(d)
def unwrap(t):
if isinstance(t, _Tensor):
r = t._batchtensor
if device_holding_tensor is not None and not t._has_device:
r = r.to(device=device_holding_tensor.device)
return r
return t
if orig in pointwise:
result_levels = llist()
arg_levels = llist()
to_expand = []
for i, f in enumerate(flat_args):
if isinstance(f, TensorLike):
ptensor, levels, _ = _tensor_levels(f)
if isinstance(f, _Tensor) and not f._has_device and device_holding_tensor is not None:
ptensor = ptensor.to(device=device_holding_tensor.device)
flat_args[i] = ptensor
for l in levels:
if l not in result_levels:
result_levels.append(l)
to_expand.append((i, levels))
for i, levels in to_expand:
flat_args[i] = _match_levels(flat_args[i], levels, result_levels)
args, kwargs = unflatten(flat_args)
result = orig(*args, **kwargs)
def wrap(t):
if isinstance(t, TensorLike):
return Tensor.from_positional(t, result_levels, device_holding_tensor is not None)
return t
return tree_map(wrap, result)
else:
def wrap(t):
if isinstance(t, TensorLike):
return Tensor.from_batched(t, device_holding_tensor is not None)
return t
with _enable_layers(all_dims):
print(f"batch_tensor for {orig}")
args, kwargs = unflatten(unwrap(f) for f in flat_args)
result = orig(*args, **kwargs)
# print("END", orig)
return tree_map(wrap, result)
def positional(self, *dims):
from . import Dim, Tensor
ptensor, levels = self._tensor, llist(self._levels)
flat_dims = llist()
view = []
needs_view = False
ndim = self.ndim
for d in dims:
if isinstance(d, DimList):
flat_dims.extend(d)
view.extend(e.size for e in d)
elif isinstance(d, Dim):
flat_dims.append(d)
view.append(d.size)
elif isinstance(d, int):
d = _wrap_dim(d, ndim, False)
flat_dims.append(d)
view.append(ptensor.size(d))
else:
flat_dims.extend(d)
view.append(prod(e.size for e in d))
needs_view = True
permute = list(range(len(levels)))
nflat = len(flat_dims)
for i, d in enumerate(flat_dims):
try:
idx = levels.index(d)
except ValueError as e:
raise DimensionBindError(f'tensor of dimensions {self.dims} does not contain dim {d}') from e
p = permute[idx]
del levels[idx]
del permute[idx]
levels.insert(i, 0)
permute.insert(i, p)
ptensor = ptensor.permute(*permute)
seen = 0
for i in range(len(levels) - 1, -1, -1):
if isinstance(levels[i], int):
seen += 1
levels[i] = -seen
result = Tensor.from_positional(ptensor, levels, self._has_device)
if needs_view:
result = result.reshape(*view, *result.size()[len(flat_dims):])
return result
def _contains_dim(input):
from . import Dim
for i in input:
if isinstance(i, Dim):
return True
def expand(self, *sizes):
if not _contains_dim(sizes):
return self.__torch_function__(torch.Tensor.expand, None, (self, *sizes))
dims = sizes
sizes = [d.size for d in dims] + [-1] * self.ndim
self = self.expand(*sizes)
return self[dims]
_not_present = object()
def _getarg(name, offset, args, kwargs, default):
if len(args) > offset:
return args[offset]
return kwargs.get(name, default)
def _patcharg(name, offset, args, kwargs, value):
if len(args) > offset:
args[offset] = value
else:
kwargs[name] = value
def _wrap(orig, dim_offset=0, keepdim_offset=1, dim_name='dim', single_dim=False, reduce=True):
from . import TensorLike, Dim, Tensor
def fn(self, *args, **kwargs):
dim = _getarg(dim_name, dim_offset, args, kwargs, _not_present)
if dim is _not_present or (single_dim and not isinstance(dim, Dim)):
with _enable_layers(self.dims):
print(f"dim fallback batch_tensor for {orig}")
return Tensor.from_batched(orig(self._batchtensor, *args, **kwargs), self._has_device)
keepdim = _getarg('keepdim', keepdim_offset, args, kwargs, False) if reduce else False
t, levels = self._tensor, llist(self._levels)
dims = _dims(dim, self._batchtensor.ndim, keepdim, single_dim)
dim_indices = tuple(levels.index(d) for d in dims)
if reduce and not keepdim:
new_levels = [l for i, l in enumerate(levels) if i not in dim_indices]
else:
new_levels = levels
if len(dim_indices) == 1:
dim_indices = dim_indices[0] # so that dims that really only take a single argument work...
args = list(args)
_patcharg(dim_name, dim_offset, args, kwargs, dim_indices)
def wrap(t):
if isinstance(t, TensorLike):
return Tensor.from_positional(t, new_levels, self._has_device)
return t
with _enable_layers(new_levels):
print(f"dim used batch_tensor for {orig}")
r = orig(t, *args, **kwargs)
return tree_map(wrap, r)
return fn
def _def(name, *args, **kwargs):
from . import _Tensor
orig = getattr(torch.Tensor, name)
setattr(_Tensor, name, _wrap(orig, *args, **kwargs))
no_slice = slice(None)
_orig_getitem = torch.Tensor.__getitem__
class dim_tracker:
def __init__(self):
self.dims = llist()
self.count = []
def record(self, d):
if d not in self.dims:
self.dims.append(d)
self.count.append(1)
def __getitem__(self, d):
return self.count[self.dims.index(d)]
def t__getitem__(self, input):
from . import Dim, DimensionBindError, _Tensor, TensorLike, DimList, Tensor
# * bail to original example if we have a single non-Dim tensor, or a non-tensor
# * locate ... or an unbound tensor list, and determine its size, bind dim list
# (remember that None does not count to the total dim count)
# * bind simple dims and dim-packs to their sizes, count the number of uses of each dim,
# produce the re-view if needed
# * for each single-use dim index, replace with no_slice and mark that it will be added
# (keep track of whether we have to call super)
# * call super if needed
# * if we have dims to bind, bind them (it will help if we eliminated ... and None before)
# this handles bool indexing handling, as well as some other simple cases.
is_simple = (not isinstance(input, Dim) and
not isinstance(input, (tuple, list)) and
# WAR for functorch bug where zero time tensors in getitem are not handled correctly.
not (isinstance(input, TensorLike) and input.ndim == 0))
if is_simple:
if isinstance(self, _Tensor):
return _Tensor.__torch_function__(_orig_getitem, None, (self, input))
else:
return _orig_getitem(self, input)
# can further optimize this case
if not isinstance(input, tuple):
input = [input]
else:
input = list(input)
dims_indexed = 0
expanding_object = None
dimlists = []
for i, s in enumerate(input):
if s is ... or isinstance(s, DimList) and not s.is_bound:
if expanding_object is not None:
msg = 'at most one ... or unbound dimension list can exist in indexing list but' \
f' found 2 at offsets {i} and {expanding_object}'
raise DimensionBindError(msg)
expanding_object = i
if isinstance(s, DimList):
dims_indexed += len(s) if s.is_bound else 0
dimlists.append(i)
elif s is not None and s is not ...:
dims_indexed += 1
ndim = self.ndim
if dims_indexed > ndim:
raise IndexError(f'at least {dims_indexed} indices were supplied but the tensor only has {ndim} dimensions.')
if expanding_object is not None:
expanding_ndims = ndim - dims_indexed
obj = input[expanding_object]
if obj is ...:
input[expanding_object:expanding_object + 1] = [no_slice] * expanding_ndims
else:
obj.bind_len(expanding_ndims)
# flatten the dimslists into the indexing
for i in reversed(dimlists):
input[i:i + 1] = input[i]
dims_indexed = 0
requires_view = False
size = self.size()
view_sizes = []
dims_seen = dim_tracker()
def add_dims(t):
if not isinstance(t, _Tensor):
return
for d in t.dims:
dims_seen.record(d)
add_dims(self)
dim_packs = []
for i, idx in enumerate(input):
if idx is None:
input[i] = no_slice
view_sizes.append(1)
requires_view = True
else:
sz = size[dims_indexed]
if isinstance(idx, Dim):
idx.size = sz
dims_seen.record(idx)
view_sizes.append(sz)
elif isinstance(idx, (tuple, list)) and idx and isinstance(idx[0], Dim):
for d in idx:
dims_seen.record(idx)
_bind_dims_to_size(sz, idx, f'offset {i}')
view_sizes.extend(d.size for d in idx)
requires_view = True
dim_packs.append(i)
else:
add_dims(idx)
view_sizes.append(sz)
dims_indexed += 1
if requires_view:
self = self.view(*view_sizes)
for i in reversed(dim_packs):
input[i:i + 1] = input[i]
# currenty:
# input is flat, containing either Dim, or Tensor, or something valid for standard indexing
# self may have first-class dims as well.
# to index:
# drop the first class dims from self, they just become direct indices of their positions
# figure out the dimensions of the indexing tensors: union of all the dims in the tensors in the index.
# these dimensions will appear and need to be bound at the first place tensor occures
if isinstance(self, _Tensor):
ptensor_self, levels = self._tensor, list(self._levels)
# indices to ptensor rather than self which has first-class dimensions
input_it = iter(input)
flat_inputs = [next(input_it) if isinstance(l, int) else l for l in levels]
has_device = self._has_device
to_pad = 0
else:
ptensor_self, flat_inputs = self, input
to_pad = ptensor_self.ndim - len(flat_inputs)
has_device = True
result_levels = []
index_levels = []
tensor_insert_point = None
to_expand = {}
requires_getindex = False
for i, inp in enumerate(flat_inputs):
if isinstance(inp, Dim) and dims_seen[inp] == 1:
flat_inputs[i] = no_slice
result_levels.append(inp)
elif isinstance(inp, TensorLike):
requires_getindex = True
if tensor_insert_point is None:
tensor_insert_point = len(result_levels)
ptensor, levels, _ = _tensor_levels(inp)
to_expand[i] = levels
flat_inputs[i] = ptensor
for l in levels:
if l not in index_levels:
index_levels.append(l)
else:
requires_getindex = True
result_levels.append(0)
if tensor_insert_point is not None:
result_levels[tensor_insert_point:tensor_insert_point] = index_levels
for i, levels in to_expand.items():
flat_inputs[i] = _match_levels(flat_inputs[i], levels, index_levels)
if requires_getindex:
result = _orig_getitem(ptensor_self, flat_inputs)
else:
result = ptensor_self
next_positional = -1
if to_pad > 0:
result_levels.extend([0] * to_pad)
for i, r in enumerate(reversed(result_levels)):
if isinstance(r, int):
result_levels[-1 - i] = next_positional
next_positional -= 1
return Tensor.from_positional(result, result_levels, has_device)
# XXX - dim is optional and can be the outer-most dimension...
def stack(tensors, new_dim, dim=0, out=None):
if isinstance(dim, int):
return torch.stack(tensors, dim, out).index(dim, new_dim)
index = None
if out is not None:
out, index = _positional_no_permute(out, dim, expand_dim=True)
ptensors = []
for t in tensors:
pt, pi = _positional_no_permute(t, dim, expand_dim=True)
if index is not None and pi != index:
pt = pt.move_dim(pi, index)
else:
index = pi
ptensors.append(pt)
pr = torch.stack(ptensors, index, out=out)
return pr.index((index, index + 1), (new_dim, dim))
_orig_split = torch.Tensor.split
def split(self, split_size_or_sections, dim=0):
from . import Dim, _Tensor
if isinstance(split_size_or_sections, int) or any(isinstance(t, int) for t in split_size_or_sections):
if isinstance(dim, Dim):
raise ValueError('when dim is specified as a Dim object, split sizes must also be dimensions.')
return _orig_split(self, split_size_or_sections, dim=dim)
if isinstance(dim, Dim):
assert isinstance(self, _Tensor), f"Tensor does not have dimension {dim}"
self, dim = _positional_no_permute(self, dim)
size = self.size(dim)
total_bound_size = 0
unbound = []
sizes = []
for i, d in enumerate(split_size_or_sections):
if d.is_bound:
sizes.append(d.size)
total_bound_size += d.size
else:
sizes.append(0)
unbound.append(i)
if unbound:
assert total_bound_size <= size, \
f"result dimensions are larger than original: {total_bound_size} vs {size} ({split_size_or_sections})"
remaining_size = size - total_bound_size
chunk_size = -(-remaining_size // len(unbound))
for u in unbound:
sz = min(chunk_size, remaining_size)
split_size_or_sections[u].size = sz
sizes[u] = sz
remaining_size -= sz
else:
assert total_bound_size == size, \
f"result dimensions do not match original: {total_bound_size} vs {size} ({split_size_or_sections})"
return tuple(t.index(dim, d) for d, t in zip(split_size_or_sections, _orig_split(self, sizes, dim=dim)))