forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_dit_to_diffusers.py
162 lines (134 loc) · 6.43 KB
/
convert_dit_to_diffusers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import os
import torch
from torchvision.datasets.utils import download_url
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, Transformer2DModel
pretrained_models = {512: "DiT-XL-2-512x512.pt", 256: "DiT-XL-2-256x256.pt"}
def download_model(model_name):
"""
Downloads a pre-trained DiT model from the web.
"""
local_path = f"pretrained_models/{model_name}"
if not os.path.isfile(local_path):
os.makedirs("pretrained_models", exist_ok=True)
web_path = f"https://dl.fbaipublicfiles.com/DiT/models/{model_name}"
download_url(web_path, "pretrained_models")
model = torch.load(local_path, map_location=lambda storage, loc: storage)
return model
def main(args):
state_dict = download_model(pretrained_models[args.image_size])
state_dict["pos_embed.proj.weight"] = state_dict["x_embedder.proj.weight"]
state_dict["pos_embed.proj.bias"] = state_dict["x_embedder.proj.bias"]
state_dict.pop("x_embedder.proj.weight")
state_dict.pop("x_embedder.proj.bias")
for depth in range(28):
state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_1.weight"] = state_dict[
"t_embedder.mlp.0.weight"
]
state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_1.bias"] = state_dict[
"t_embedder.mlp.0.bias"
]
state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_2.weight"] = state_dict[
"t_embedder.mlp.2.weight"
]
state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_2.bias"] = state_dict[
"t_embedder.mlp.2.bias"
]
state_dict[f"transformer_blocks.{depth}.norm1.emb.class_embedder.embedding_table.weight"] = state_dict[
"y_embedder.embedding_table.weight"
]
state_dict[f"transformer_blocks.{depth}.norm1.linear.weight"] = state_dict[
f"blocks.{depth}.adaLN_modulation.1.weight"
]
state_dict[f"transformer_blocks.{depth}.norm1.linear.bias"] = state_dict[
f"blocks.{depth}.adaLN_modulation.1.bias"
]
q, k, v = torch.chunk(state_dict[f"blocks.{depth}.attn.qkv.weight"], 3, dim=0)
q_bias, k_bias, v_bias = torch.chunk(state_dict[f"blocks.{depth}.attn.qkv.bias"], 3, dim=0)
state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
state_dict[f"transformer_blocks.{depth}.attn1.to_q.bias"] = q_bias
state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
state_dict[f"transformer_blocks.{depth}.attn1.to_k.bias"] = k_bias
state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
state_dict[f"transformer_blocks.{depth}.attn1.to_v.bias"] = v_bias
state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict[
f"blocks.{depth}.attn.proj.weight"
]
state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict[f"blocks.{depth}.attn.proj.bias"]
state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.weight"] = state_dict[f"blocks.{depth}.mlp.fc1.weight"]
state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.bias"] = state_dict[f"blocks.{depth}.mlp.fc1.bias"]
state_dict[f"transformer_blocks.{depth}.ff.net.2.weight"] = state_dict[f"blocks.{depth}.mlp.fc2.weight"]
state_dict[f"transformer_blocks.{depth}.ff.net.2.bias"] = state_dict[f"blocks.{depth}.mlp.fc2.bias"]
state_dict.pop(f"blocks.{depth}.attn.qkv.weight")
state_dict.pop(f"blocks.{depth}.attn.qkv.bias")
state_dict.pop(f"blocks.{depth}.attn.proj.weight")
state_dict.pop(f"blocks.{depth}.attn.proj.bias")
state_dict.pop(f"blocks.{depth}.mlp.fc1.weight")
state_dict.pop(f"blocks.{depth}.mlp.fc1.bias")
state_dict.pop(f"blocks.{depth}.mlp.fc2.weight")
state_dict.pop(f"blocks.{depth}.mlp.fc2.bias")
state_dict.pop(f"blocks.{depth}.adaLN_modulation.1.weight")
state_dict.pop(f"blocks.{depth}.adaLN_modulation.1.bias")
state_dict.pop("t_embedder.mlp.0.weight")
state_dict.pop("t_embedder.mlp.0.bias")
state_dict.pop("t_embedder.mlp.2.weight")
state_dict.pop("t_embedder.mlp.2.bias")
state_dict.pop("y_embedder.embedding_table.weight")
state_dict["proj_out_1.weight"] = state_dict["final_layer.adaLN_modulation.1.weight"]
state_dict["proj_out_1.bias"] = state_dict["final_layer.adaLN_modulation.1.bias"]
state_dict["proj_out_2.weight"] = state_dict["final_layer.linear.weight"]
state_dict["proj_out_2.bias"] = state_dict["final_layer.linear.bias"]
state_dict.pop("final_layer.linear.weight")
state_dict.pop("final_layer.linear.bias")
state_dict.pop("final_layer.adaLN_modulation.1.weight")
state_dict.pop("final_layer.adaLN_modulation.1.bias")
# DiT XL/2
transformer = Transformer2DModel(
sample_size=args.image_size // 8,
num_layers=28,
attention_head_dim=72,
in_channels=4,
out_channels=8,
patch_size=2,
attention_bias=True,
num_attention_heads=16,
activation_fn="gelu-approximate",
num_embeds_ada_norm=1000,
norm_type="ada_norm_zero",
norm_elementwise_affine=False,
)
transformer.load_state_dict(state_dict, strict=True)
scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_schedule="linear",
prediction_type="epsilon",
clip_sample=False,
)
vae = AutoencoderKL.from_pretrained(args.vae_model)
pipeline = DiTPipeline(transformer=transformer, vae=vae, scheduler=scheduler)
if args.save:
pipeline.save_pretrained(args.checkpoint_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--image_size",
default=256,
type=int,
required=False,
help="Image size of pretrained model, either 256 or 512.",
)
parser.add_argument(
"--vae_model",
default="stabilityai/sd-vae-ft-ema",
type=str,
required=False,
help="Path to pretrained VAE model, either stabilityai/sd-vae-ft-mse or stabilityai/sd-vae-ft-ema.",
)
parser.add_argument(
"--save", default=True, type=bool, required=False, help="Whether to save the converted pipeline or not."
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the output pipeline."
)
args = parser.parse_args()
main(args)