forked from jhong93/spot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_e2e.py
executable file
·680 lines (559 loc) · 25.7 KB
/
train_e2e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
#!/usr/bin/env python3
""" Training for E2E-Spot """
import os
import argparse
from contextlib import nullcontext
import random
import numpy as np
from tabulate import tabulate
import torch
torch.backends.cudnn.benchmark = True
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import (
ChainedScheduler, LinearLR, CosineAnnealingLR)
from torch.utils.data import DataLoader
import torchvision
import timm
from tqdm import tqdm
from model.common import step, BaseRGBModel, MLP
from model.shift import make_temporal_shift
from model.modules import *
from dataset.frame import ActionSpotDataset, ActionSpotVideoDataset
from util.eval import process_frame_predictions
from util.io import load_json, store_json, store_gz_json, clear_files
from util.dataset import DATASETS, load_classes
from util.score import compute_mAPs
EPOCH_NUM_FRAMES = 500000
BASE_NUM_WORKERS = 4
BASE_NUM_VAL_EPOCHS = 20
INFERENCE_BATCH_SIZE = 4
# Prevent the GRU params from going too big (cap it at a RegNet-Y 800MF)
MAX_GRU_HIDDEN_DIM = 768
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('dataset', type=str, choices=DATASETS)
parser.add_argument('frame_dir', type=str, help='Path to extracted frames')
parser.add_argument('--modality', type=str, choices=['rgb', 'bw', 'flow'],
default='rgb')
parser.add_argument(
'-m', '--feature_arch', type=str, required=True, choices=[
# From torchvision
'rn18',
'rn18_tsm',
'rn18_gsm',
'rn50',
'rn50_tsm',
'rn50_gsm',
# From timm (following its naming conventions)
'rny002',
'rny002_tsm',
'rny002_gsm',
'rny008',
'rny008_tsm',
'rny008_gsm',
# From timm
'convnextt',
'convnextt_tsm',
'convnextt_gsm'
], help='CNN architecture for feature extraction')
parser.add_argument(
'-t', '--temporal_arch', type=str, default='gru',
# choices=['', 'gru', 'deeper_gru', 'mstcn', 'asformer'],
help='Spotting architecture, after spatial pooling')
parser.add_argument('--clip_len', type=int, default=100)
parser.add_argument('--crop_dim', type=int, default=224)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('-ag', '--acc_grad_iter', type=int, default=1,
help='Use gradient accumulation')
parser.add_argument('--warm_up_epochs', type=int, default=3)
parser.add_argument('--num_epochs', type=int, default=50)
parser.add_argument('-lr', '--learning_rate', type=float, default=0.001)
parser.add_argument('-s', '--save_dir', type=str, required=True,
help='Dir to save checkpoints and predictions')
parser.add_argument('--resume', action='store_true',
help='Resume training from checkpoint in <save_dir>')
parser.add_argument('--start_val_epoch', type=int)
parser.add_argument('--criterion', choices=['map', 'loss'], default='map')
parser.add_argument('--dilate_len', type=int, default=0,
help='Label dilation when training')
parser.add_argument('--mixup', type=bool, default=True)
parser.add_argument('-j', '--num_workers', type=int,
help='Base number of dataloader workers')
# Sample based on foreground
parser.add_argument('--fg_upsample', type=float)
parser.add_argument('-mgpu', '--gpu_parallel', action='store_true')
parser.add_argument('--use_mse_loss', action='store_true',
help='add MSE loss term to the training loss')
return parser.parse_args()
class E2EModel(BaseRGBModel):
class Impl(nn.Module):
def __init__(self, num_classes, feature_arch, temporal_arch, clip_len,
modality):
super().__init__()
is_rgb = modality == 'rgb'
in_channels = {'flow': 2, 'bw': 1, 'rgb': 3}[modality]
if feature_arch.startswith(('rn18', 'rn50')):
resnet_name = feature_arch.split('_')[0].replace('rn', 'resnet')
features = getattr(
torchvision.models, resnet_name)(pretrained=is_rgb)
feat_dim = features.fc.in_features
features.fc = nn.Identity()
# import torchsummary
# print(torchsummary.summary(features.to('cuda'), (3, 224, 224)))
# Flow has only two input channels
if not is_rgb:
#FIXME: args maybe wrong for larger resnet
features.conv1 = nn.Conv2d(
in_channels, 64, kernel_size=(7, 7), stride=(2, 2),
padding=(3, 3), bias=False)
elif feature_arch.startswith(('rny002', 'rny008')):
features = timm.create_model({
'rny002': 'regnety_002',
'rny008': 'regnety_008',
}[feature_arch.rsplit('_', 1)[0]], pretrained=is_rgb)
feat_dim = features.head.fc.in_features
features.head.fc = nn.Identity()
if not is_rgb:
features.stem.conv = nn.Conv2d(
in_channels, 32, kernel_size=(3, 3), stride=(2, 2),
padding=(1, 1), bias=False)
elif 'convnextt' in feature_arch:
features = timm.create_model('convnext_tiny', pretrained=is_rgb)
feat_dim = features.head.fc.in_features
features.head.fc = nn.Identity()
if not is_rgb:
features.stem[0] = nn.Conv2d(
in_channels, 96, kernel_size=4, stride=4)
else:
raise NotImplementedError(feature_arch)
# Add Temporal Shift Modules
self._require_clip_len = -1
if feature_arch.endswith('_tsm'):
make_temporal_shift(features, clip_len, is_gsm=False)
self._require_clip_len = clip_len
elif feature_arch.endswith('_gsm'):
make_temporal_shift(features, clip_len, is_gsm=True)
self._require_clip_len = clip_len
self._features = features
self._feat_dim = feat_dim
if 'gru' in temporal_arch:
hidden_dim = feat_dim
if hidden_dim > MAX_GRU_HIDDEN_DIM:
hidden_dim = MAX_GRU_HIDDEN_DIM
print('Clamped GRU hidden dim: {} -> {}'.format(
feat_dim, hidden_dim))
if temporal_arch in ('gru', 'deeper_gru'):
self._pred_fine = GRUPrediction(
feat_dim, num_classes, hidden_dim,
num_layers=3 if temporal_arch[0] == 'd' else 1)
else:
raise NotImplementedError(temporal_arch)
elif temporal_arch == 'mstcn':
self._pred_fine = TCNPrediction(feat_dim, num_classes, 3)
elif temporal_arch == 'asformer':
self._pred_fine = ASFormerPrediction(feat_dim, num_classes, 3)
elif temporal_arch == '':
self._pred_fine = FCPrediction(feat_dim, num_classes)
elif temporal_arch == 'transformer_enc_only_base_11m':
from positional_encodings.torch_encodings import PositionalEncoding1D, Summer
from x_transformers import Encoder
hidden_dim = 256
down_projection = nn.Linear(feat_dim, hidden_dim) # feat_dim is too large, needs to down project
pos_enc = Summer(PositionalEncoding1D(hidden_dim)) # positional encoding for sequence
encoder = Encoder(
dim = hidden_dim,
depth = 5,
heads = 8,
attn_flash = True,
layer_dropout = 0.1, # stochastic depth - dropout entire layer
attn_dropout = 0.1, # dropout post-attention
ff_dropout = 0.1 # feedforward dropout
) # encoder-only transformer
fc = MLP(hidden_dim, hidden_dim, num_classes, 3) # final classifier
# put everything together
self._pred_fine = nn.Sequential(down_projection, pos_enc, encoder, fc)
elif temporal_arch == 'mamba_1':
from mamba_ssm import Mamba
hidden_dim = 1024
down_projection = nn.Linear(feat_dim, hidden_dim)
mamba = Mamba(
# This module uses roughly 3 * expand * d_model^2 parameters
d_model=hidden_dim, # Model dimension d_model
d_state=16, # SSM state expansion factor
d_conv=4, # Local convolution width
expand=2, # Block expansion factor
).to("cuda")
fc = MLP(hidden_dim, hidden_dim, num_classes, 3)
self._pred_fine = nn.Sequential(down_projection, mamba, fc)
else:
raise NotImplementedError(temporal_arch)
def forward(self, x):
batch_size, true_clip_len, channels, height, width = x.shape
clip_len = true_clip_len
if self._require_clip_len > 0:
# TSM module requires clip len to be known
assert true_clip_len <= self._require_clip_len, \
'Expected {}, got {}'.format(
self._require_clip_len, true_clip_len)
if true_clip_len < self._require_clip_len:
x = F.pad(
x, (0,) * 7 + (self._require_clip_len - true_clip_len,))
clip_len = self._require_clip_len
im_feat = self._features(
x.view(-1, channels, height, width)
).reshape(batch_size, clip_len, self._feat_dim)
if true_clip_len != clip_len:
# Undo padding
im_feat = im_feat[:, :true_clip_len, :]
return self._pred_fine(im_feat)
def print_stats(self):
print(f"Model params:{sum(p.numel() for p in self.parameters()):,}")
print(
f"CNN features:{sum(p.numel() for p in self._features.parameters()):,}"
)
print(f"Temporal:{sum(p.numel() for p in self._pred_fine.parameters()):,}")
def __init__(self, num_classes, feature_arch, temporal_arch, clip_len,
modality, device='cuda', multi_gpu=False):
self.device = device
self._multi_gpu = multi_gpu
self._model = E2EModel.Impl(
num_classes, feature_arch, temporal_arch, clip_len, modality)
self._model.print_stats()
if multi_gpu:
self._model = nn.DataParallel(self._model)
self._model.to(device)
self._num_classes = num_classes
def epoch(self, loader, optimizer=None, scaler=None, lr_scheduler=None,
acc_grad_iter=1, fg_weight=5):
if optimizer is None:
self._model.eval()
else:
optimizer.zero_grad()
self._model.train()
ce_kwargs = {}
if fg_weight != 1:
ce_kwargs['weight'] = torch.FloatTensor(
[1] + [fg_weight] * (self._num_classes - 1)).to(self.device)
epoch_loss = 0.
with torch.no_grad() if optimizer is None else nullcontext():
for batch_idx, batch in enumerate(tqdm(loader)):
frame = loader.dataset.load_frame_gpu(batch, self.device)
label = batch['label'].to(self.device)
# Depends on whether mixup is used
label = label.flatten() if len(label.shape) == 2 \
else label.view(-1, label.shape[-1])
with torch.cuda.amp.autocast():
pred = self._model(frame)
loss = 0.
if len(pred.shape) == 3:
pred = pred.unsqueeze(0)
for i in range(pred.shape[0]):
loss += F.cross_entropy(
pred[i].reshape(-1, self._num_classes), label,
**ce_kwargs)
if optimizer is not None:
step(optimizer, scaler, loss / acc_grad_iter,
lr_scheduler=lr_scheduler,
backward_only=(batch_idx + 1) % acc_grad_iter != 0)
epoch_loss += loss.detach().item()
return epoch_loss / len(loader) # Avg loss
def predict(self, seq, use_amp=True):
if not isinstance(seq, torch.Tensor):
seq = torch.FloatTensor(seq)
if len(seq.shape) == 4: # (L, C, H, W)
seq = seq.unsqueeze(0)
if seq.device != self.device:
seq = seq.to(self.device)
self._model.eval()
with torch.no_grad():
with torch.cuda.amp.autocast() if use_amp else nullcontext():
pred = self._model(seq)
if isinstance(pred, tuple):
pred = pred[0]
if len(pred.shape) > 3:
pred = pred[-1]
pred = torch.softmax(pred, axis=2)
pred_cls = torch.argmax(pred, axis=2)
return pred_cls.cpu().numpy(), pred.cpu().numpy()
def evaluate(model, dataset, split, classes, save_pred, calc_stats=True,
save_scores=True):
pred_dict = {}
for video, video_len, _ in dataset.videos:
pred_dict[video] = (
np.zeros((video_len, len(classes) + 1), np.float32),
np.zeros(video_len, np.int32))
# Do not up the batch size if the dataset augments
batch_size = 1 if dataset.augment else INFERENCE_BATCH_SIZE
for clip in tqdm(DataLoader(
dataset, num_workers=BASE_NUM_WORKERS * 2, pin_memory=True,
batch_size=batch_size
)):
if batch_size > 1:
# Batched by dataloader
_, batch_pred_scores = model.predict(clip['frame'])
for i in range(clip['frame'].shape[0]):
video = clip['video'][i]
scores, support = pred_dict[video]
pred_scores = batch_pred_scores[i]
start = clip['start'][i].item()
if start < 0:
pred_scores = pred_scores[-start:, :]
start = 0
end = start + pred_scores.shape[0]
if end >= scores.shape[0]:
end = scores.shape[0]
pred_scores = pred_scores[:end - start, :]
scores[start:end, :] += pred_scores
support[start:end] += 1
else:
# Batched by dataset
scores, support = pred_dict[clip['video'][0]]
start = clip['start'][0].item()
_, pred_scores = model.predict(clip['frame'][0])
if start < 0:
pred_scores = pred_scores[:, -start:, :]
start = 0
end = start + pred_scores.shape[1]
if end >= scores.shape[0]:
end = scores.shape[0]
pred_scores = pred_scores[:,:end - start, :]
scores[start:end, :] += np.sum(pred_scores, axis=0)
support[start:end] += pred_scores.shape[0]
err, f1, pred_events, pred_events_high_recall, pred_scores = \
process_frame_predictions(dataset, classes, pred_dict)
avg_mAP = None
if calc_stats:
print('=== Results on {} (w/o NMS) ==='.format(split))
print('Error (frame-level): {:0.2f}\n'.format(err.get() * 100))
def get_f1_tab_row(str_k):
k = classes[str_k] if str_k != 'any' else None
return [str_k, f1.get(k) * 100, *f1.tp_fp_fn(k)]
rows = [get_f1_tab_row('any')]
for c in sorted(classes):
rows.append(get_f1_tab_row(c))
print(tabulate(rows, headers=['Exact frame', 'F1', 'TP', 'FP', 'FN'],
floatfmt='0.2f'))
print()
mAPs, _ = compute_mAPs(dataset.labels, pred_events_high_recall)
avg_mAP = np.mean(mAPs[1:])
if save_pred is not None:
store_json(save_pred + '.json', pred_events)
store_gz_json(save_pred + '.recall.json.gz', pred_events_high_recall)
if save_scores:
store_gz_json(save_pred + '.score.json.gz', pred_scores)
return avg_mAP
def get_last_epoch(save_dir):
max_epoch = -1
for file_name in os.listdir(save_dir):
if not file_name.startswith('optim_'):
continue
epoch = int(os.path.splitext(file_name)[0].split('optim_')[1])
if epoch > max_epoch:
max_epoch = epoch
return max_epoch
def get_best_epoch_and_history(save_dir, criterion):
data = load_json(os.path.join(save_dir, 'loss.json'))
if criterion == 'map':
key = 'val_mAP'
best = max(data, key=lambda x: x[key])
else:
key = 'val'
best = min(data, key=lambda x: x[key])
return data, best['epoch'], best[key]
def get_datasets(args):
classes = load_classes(os.path.join('data', args.dataset, 'class.txt'))
dataset_len = EPOCH_NUM_FRAMES // args.clip_len
dataset_kwargs = {
'crop_dim': args.crop_dim, 'dilate_len': args.dilate_len,
'mixup': args.mixup
}
if args.fg_upsample is not None:
assert args.fg_upsample > 0
dataset_kwargs['fg_upsample'] = args.fg_upsample
print('Dataset size:', dataset_len)
train_data = ActionSpotDataset(
classes, os.path.join('data', args.dataset, 'train.json'),
args.frame_dir, args.modality, args.clip_len, dataset_len,
is_eval=False, **dataset_kwargs)
train_data.print_info()
val_data = ActionSpotDataset(
classes, os.path.join('data', args.dataset, 'val.json'),
args.frame_dir, args.modality, args.clip_len, dataset_len // 4,
**dataset_kwargs)
val_data.print_info()
val_data_frames = None
if args.criterion == 'map':
# Only perform mAP evaluation during training if criterion is mAP
val_data_frames = ActionSpotVideoDataset(
classes, os.path.join('data', args.dataset, 'val.json'),
args.frame_dir, args.modality, args.clip_len,
crop_dim=args.crop_dim, overlap_len=0)
return classes, train_data, val_data, val_data_frames
def load_from_save(
args, model, optimizer, scaler, lr_scheduler
):
assert args.save_dir is not None
epoch = get_last_epoch(args.save_dir)
print('Loading from epoch {}'.format(epoch))
model.load(torch.load(os.path.join(
args.save_dir, 'checkpoint_{:03d}.pt'.format(epoch))))
if args.resume:
# print('(Resume) Train loss:', model.epoch(train_loader))
# print('(Resume) Val loss:', model.epoch(val_loader))
opt_data = torch.load(os.path.join(
args.save_dir, 'optim_{:03d}.pt'.format(epoch)))
optimizer.load_state_dict(opt_data['optimizer_state_dict'])
scaler.load_state_dict(opt_data['scaler_state_dict'])
lr_scheduler.load_state_dict(opt_data['lr_state_dict'])
losses, best_epoch, best_criterion = get_best_epoch_and_history(
args.save_dir, args.criterion)
return epoch, losses, best_epoch, best_criterion
def store_config(file_path, args, num_epochs, classes):
config = {
'dataset': args.dataset,
'num_classes': len(classes),
'modality': args.modality,
'feature_arch': args.feature_arch,
'temporal_arch': args.temporal_arch,
'clip_len': args.clip_len,
'batch_size': args.batch_size,
'crop_dim': args.crop_dim,
'num_epochs': num_epochs,
'warm_up_epochs': args.warm_up_epochs,
'learning_rate': args.learning_rate,
'start_val_epoch': args.start_val_epoch,
'gpu_parallel': args.gpu_parallel,
'epoch_num_frames': EPOCH_NUM_FRAMES,
'dilate_len': args.dilate_len,
'mixup': args.mixup,
'fg_upsample': args.fg_upsample
}
store_json(file_path, config, pretty=True)
def get_num_train_workers(args):
n = BASE_NUM_WORKERS * 2
# if args.gpu_parallel:
# n *= torch.cuda.device_count()
return min(os.cpu_count(), n)
def get_lr_scheduler(args, optimizer, num_steps_per_epoch):
cosine_epochs = args.num_epochs - args.warm_up_epochs
print('Using Linear Warmup ({}) + Cosine Annealing LR ({})'.format(
args.warm_up_epochs, cosine_epochs))
return args.num_epochs, ChainedScheduler([
LinearLR(optimizer, start_factor=0.01, end_factor=1.0,
total_iters=args.warm_up_epochs * num_steps_per_epoch),
CosineAnnealingLR(optimizer,
num_steps_per_epoch * cosine_epochs)])
def main(args):
if args.num_workers is not None:
global BASE_NUM_WORKERS
BASE_NUM_WORKERS = args.num_workers
assert args.batch_size % args.acc_grad_iter == 0
if args.start_val_epoch is None:
args.start_val_epoch = args.num_epochs - BASE_NUM_VAL_EPOCHS
if args.crop_dim <= 0:
args.crop_dim = None
classes, train_data, val_data, val_data_frames = get_datasets(args)
def worker_init_fn(id):
random.seed(id + epoch * 100)
loader_batch_size = args.batch_size // args.acc_grad_iter
train_loader = DataLoader(
train_data, shuffle=False, batch_size=loader_batch_size,
pin_memory=True, num_workers=get_num_train_workers(args),
prefetch_factor=1, worker_init_fn=worker_init_fn)
val_loader = DataLoader(
val_data, shuffle=False, batch_size=loader_batch_size,
pin_memory=True, num_workers=BASE_NUM_WORKERS,
worker_init_fn=worker_init_fn)
model = E2EModel(
len(classes) + 1, args.feature_arch, args.temporal_arch,
clip_len=args.clip_len, modality=args.modality,
multi_gpu=args.gpu_parallel)
optimizer, scaler = model.get_optimizer({'lr': args.learning_rate})
# Warmup schedule
num_steps_per_epoch = len(train_loader) // args.acc_grad_iter
num_epochs, lr_scheduler = get_lr_scheduler(
args, optimizer, num_steps_per_epoch)
losses = []
best_epoch = None
best_criterion = 0 if args.criterion == 'map' else float('inf')
epoch = 0
if args.resume:
epoch, losses, best_epoch, best_criterion = load_from_save(
args, model, optimizer, scaler, lr_scheduler)
epoch += 1
# Write it to console
store_config('/dev/stdout', args, num_epochs, classes)
for epoch in range(epoch, num_epochs):
train_loss = model.epoch(
train_loader, optimizer, scaler,
lr_scheduler=lr_scheduler, acc_grad_iter=args.acc_grad_iter)
val_loss = model.epoch(val_loader, acc_grad_iter=args.acc_grad_iter)
print('[Epoch {}] Train loss: {:0.5f} Val loss: {:0.5f}'.format(
epoch, train_loss, val_loss))
val_mAP = 0
if args.criterion == 'loss':
if val_loss < best_criterion:
best_criterion = val_loss
best_epoch = epoch
print('New best epoch!')
elif args.criterion == 'map':
if epoch >= args.start_val_epoch:
pred_file = None
if args.save_dir is not None:
pred_file = os.path.join(
args.save_dir, 'pred-val.{}'.format(epoch))
os.makedirs(args.save_dir, exist_ok=True)
val_mAP = evaluate(model, val_data_frames, 'VAL', classes,
pred_file, save_scores=False)
if args.criterion == 'map' and val_mAP > best_criterion:
best_criterion = val_mAP
best_epoch = epoch
print('New best epoch!')
else:
print('Unknown criterion:', args.criterion)
losses.append({
'epoch': epoch, 'train': train_loss, 'val': val_loss,
'val_mAP': val_mAP})
if args.save_dir is not None:
os.makedirs(args.save_dir, exist_ok=True)
store_json(os.path.join(args.save_dir, 'loss.json'), losses,
pretty=True)
torch.save(
model.state_dict(),
os.path.join(args.save_dir,
'checkpoint_{:03d}.pt'.format(epoch)))
clear_files(args.save_dir, r'optim_\d+\.pt')
torch.save(
{'optimizer_state_dict': optimizer.state_dict(),
'scaler_state_dict': scaler.state_dict(),
'lr_state_dict': lr_scheduler.state_dict()},
os.path.join(args.save_dir,
'optim_{:03d}.pt'.format(epoch)))
store_config(os.path.join(args.save_dir, 'config.json'),
args, num_epochs, classes)
print('Best epoch: {}\n'.format(best_epoch))
if args.save_dir is not None:
model.load(torch.load(os.path.join(
args.save_dir, 'checkpoint_{:03d}.pt'.format(best_epoch))))
# Evaluate on VAL if not already done
eval_splits = ['val'] if args.criterion != 'map' else []
# Evaluate on hold out splits
eval_splits += ['test', 'challenge']
for split in eval_splits:
split_path = os.path.join(
'data', args.dataset, '{}.json'.format(split))
if os.path.exists(split_path):
split_data = ActionSpotVideoDataset(
classes, split_path, args.frame_dir, args.modality,
args.clip_len, overlap_len=args.clip_len // 2,
crop_dim=args.crop_dim)
split_data.print_info()
pred_file = None
if args.save_dir is not None:
pred_file = os.path.join(
args.save_dir, 'pred-{}.{}'.format(split, best_epoch))
evaluate(model, split_data, split.upper(), classes, pred_file,
calc_stats=split != 'challenge')
if __name__ == '__main__':
main(get_args())