forked from meta-llama/llama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
141 lines (114 loc) · 3.96 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
from typing import Tuple
import os
import sys
import torch
import fire
import time
import json
import functools
from pathlib import Path
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
from llama import ModelArgs, Transformer, Tokenizer, LLaMA
import gradio as gr
import queue
import multiprocessing as mp
import torch.distributed as dist
from time import sleep
def setup_model_parallel(local_rank, world_size) -> Tuple[int, int]:
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["RANK"] = str(local_rank)
os.environ["LOCAL_RANK"] = str(local_rank)
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "29500"
torch.distributed.init_process_group("nccl")
initialize_model_parallel(world_size)
torch.cuda.set_device(local_rank)
# seed must be the same in all processes
torch.manual_seed(1)
return
def load(
ckpt_dir: str,
tokenizer_path: str,
local_rank: int,
world_size: int,
max_seq_len: int,
max_batch_size: int,
) -> LLaMA:
start_time = time.time()
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
assert world_size == len(
checkpoints
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}"
ckpt_path = checkpoints[local_rank]
print("Loading")
checkpoint = torch.load(ckpt_path, map_location="cpu")
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
)
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
torch.set_default_tensor_type(torch.cuda.HalfTensor)
model = Transformer(model_args)
torch.set_default_tensor_type(torch.FloatTensor)
model.load_state_dict(checkpoint, strict=False)
generator = LLaMA(model, tokenizer)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return generator
def inference(prompt, temperature, top_p, max_len, generator):
results = generator.generate(
[prompt], max_gen_len=max_len, temperature=temperature, top_p=top_p
)
return results[0]
def server(local_rank, world_size, msg_queue, ret_queue, ckpt_dir, tokenizer_path):
setup_model_parallel(local_rank, world_size)
if local_rank > 0:
sys.stdout = open(os.devnull, "w")
max_batch_size = 32
max_seq_len = 512
generator = load(
ckpt_dir, tokenizer_path, local_rank, world_size, max_seq_len, max_batch_size
)
while True:
if not msg_queue.empty():
args = msg_queue.get()
result = inference(*args, generator)
if local_rank == 0:
ret_queue.put(result)
sleep(0.1)
def req_dist(prompt, temperature: float, top_p: float, max_len: int, msg_queue, ret_queue):
max_len = int(max_len)
while not msg_queue.full():
msg_queue.put((prompt, temperature, top_p, max_len))
while True:
if not ret_queue.empty():
result = ret_queue.get()
return result
sleep(0.1)
def main(ckpt_dir: str,
tokenizer_path: str,
world_size: int, ):
# init codes here
processes = []
msg_queue = mp.Queue(world_size)
ret_queue = mp.Queue(1)
for i in range(world_size):
processes.append(
mp.Process(target=server, args=(i, world_size, msg_queue, ret_queue, ckpt_dir, tokenizer_path)))
processes[-1].start()
app = gr.Interface(
functools.partial(req_dist, msg_queue=msg_queue, ret_queue=ret_queue),
[
"textbox",
"number",
"number",
"number"
],
"text",
)
app.launch(share=True)
if __name__ == '__main__':
fire.Fire(main)