forked from pgvector/pgvector-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch_image_search.py
71 lines (52 loc) · 2.24 KB
/
pytorch_image_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import matplotlib.pyplot as plt
from pgvector.psycopg import register_vector
import psycopg
import tempfile
import torch
import torchvision
from tqdm import tqdm
seed = True
# establish connection
conn = psycopg.connect(dbname='pgvector_example', autocommit=True)
conn.execute('CREATE EXTENSION IF NOT EXISTS vector')
register_vector(conn)
# load images
transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
dataset = torchvision.datasets.CIFAR10(root=tempfile.gettempdir(), train=True, download=True, transform=transform)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1000)
# load pretrained model
device = torch.device('mps' if torch.backends.mps.is_available() else 'cpu')
model = torchvision.models.resnet18(weights='DEFAULT')
model.fc = torch.nn.Identity()
model.to(device)
model.eval()
def generate_embeddings(inputs):
return model(inputs.to(device)).detach().cpu().numpy()
# generate, save, and index embeddings
if seed:
conn.execute('DROP TABLE IF EXISTS image')
conn.execute('CREATE TABLE image (id bigserial PRIMARY KEY, embedding vector(512))')
print('Generating embeddings')
for data in tqdm(dataloader):
embeddings = generate_embeddings(data[0])
sql = 'INSERT INTO image (embedding) VALUES ' + ','.join(['(%s)' for _ in embeddings])
params = [embedding for embedding in embeddings]
conn.execute(sql, params)
def show_images(dataset_images):
grid = torchvision.utils.make_grid(dataset_images)
img = (grid / 2 + 0.5).permute(1, 2, 0).numpy()
plt.imshow(img)
plt.draw()
plt.waitforbuttonpress(timeout=3)
# load 5 random unseen images
queryset = torchvision.datasets.CIFAR10(root=tempfile.gettempdir(), train=False, download=True, transform=transform)
queryloader = torch.utils.data.DataLoader(queryset, batch_size=5, shuffle=True)
images = next(iter(queryloader))[0]
# generate and query embeddings
embeddings = generate_embeddings(images)
for image, embedding in zip(images, embeddings):
result = conn.execute('SELECT id FROM image ORDER BY embedding <=> %s LIMIT 15', (embedding,)).fetchall()
show_images([image] + [dataset[row[0] - 1][0] for row in result])