forked from mlcommons/hpc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdownload_data.py
157 lines (131 loc) · 5.43 KB
/
download_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import argparse
import glob
import logging
import os
import ocpmodels
"""
This script provides users with an automated way to download, preprocess (where
applicable), and organize data to readily be used by the existing config files.
"""
DOWNLOAD_LINKS = {
"s2ef": {
"200k": "https://dl.fbaipublicfiles.com/opencatalystproject/data/s2ef_train_200K.tar",
"2M": "https://dl.fbaipublicfiles.com/opencatalystproject/data/s2ef_train_2M.tar",
"20M": "https://dl.fbaipublicfiles.com/opencatalystproject/data/s2ef_train_20M.tar",
"all": "https://dl.fbaipublicfiles.com/opencatalystproject/data/s2ef_train_all.tar",
"val_id": "https://dl.fbaipublicfiles.com/opencatalystproject/data/s2ef_val_id.tar",
"val_ood_ads": "https://dl.fbaipublicfiles.com/opencatalystproject/data/s2ef_val_ood_ads.tar",
"val_ood_cat": "https://dl.fbaipublicfiles.com/opencatalystproject/data/s2ef_val_ood_cat.tar",
"val_ood_both": "https://dl.fbaipublicfiles.com/opencatalystproject/data/s2ef_val_ood_both.tar",
"test": "https://dl.fbaipublicfiles.com/opencatalystproject/data/s2ef_test_lmdbs.tar.gz",
"rattled": "https://dl.fbaipublicfiles.com/opencatalystproject/data/s2ef_rattled.tar",
"md": "https://dl.fbaipublicfiles.com/opencatalystproject/data/s2ef_md.tar",
},
"is2re": "https://dl.fbaipublicfiles.com/opencatalystproject/data/is2res_train_val_test_lmdbs.tar.gz",
}
S2EF_COUNTS = {
"s2ef": {
"200k": 200000,
"2M": 2000000,
"20M": 20000000,
"all": 133934018,
"val_id": 999866,
"val_ood_ads": 999838,
"val_ood_cat": 999809,
"val_ood_both": 999944,
"rattled": 16677031,
"md": 38315405,
},
}
def get_data(task, split, del_intmd_files):
datadir = os.path.join(os.path.dirname(ocpmodels.__path__[0]), "data")
os.makedirs(datadir, exist_ok=True)
if task == "s2ef" and split is None:
raise NotImplementedError("S2EF requires a split to be defined.")
if task == "s2ef":
assert (
split in DOWNLOAD_LINKS[task]
), f'S2EF "{split}" split not defined, please specify one of the following: {list(DOWNLOAD_LINKS["s2ef"].keys())}'
download_link = DOWNLOAD_LINKS[task][split]
elif task == "is2re":
download_link = DOWNLOAD_LINKS[task]
os.system(f"wget {download_link}")
filename = os.path.basename(download_link)
logging.info("Extracting contents...")
os.system(f"tar -xf {filename}")
dirname = filename.split(".")[0]
if task == "s2ef" and split != "test":
compressed_dir = os.path.join(dirname, dirname)
if split in ["200k", "2M", "20M", "all", "rattled", "md"]:
output_path = os.path.join(datadir, task, split, "train")
else:
output_path = os.path.join(datadir, task, "all", split)
uncompressed_dir = uncompress_data(compressed_dir)
preprocess_data(uncompressed_dir, output_path)
verify_count(output_path, task, split)
if task == "s2ef" and split == "test":
os.system(f"mv {dirname}/test_data/s2ef/all/test_* {datadir}/s2ef/all")
elif task == "is2re":
os.system(f"mv {dirname}/data/is2re {datadir}")
if del_intmd_files:
cleanup(filename, dirname)
def uncompress_data(compressed_dir):
import uncompress
parser = uncompress.get_parser()
args, _ = parser.parse_known_args()
args.ipdir = compressed_dir
args.opdir = os.path.dirname(compressed_dir) + "_uncompressed"
uncompress.main(args)
return args.opdir
def preprocess_data(uncompressed_dir, output_path):
import preprocess_ef as preprocess
parser = preprocess.get_parser()
args, _ = parser.parse_known_args()
args.data_path = uncompressed_dir
args.out_path = output_path
preprocess.main(args)
def verify_count(output_path, task, split):
paths = glob.glob(os.path.join(output_path, "*.txt"))
count = 0
for path in paths:
lines = open(path, "r").read().splitlines()
count += len(lines)
assert (
count == S2EF_COUNTS[task][split]
), f"S2EF {split} count incorrect, verify preprocessing has completed successfully."
def cleanup(filename, dirname):
import shutil
if os.path.exists(filename):
os.remove(filename)
if os.path.exists(dirname):
shutil.rmtree(dirname)
if os.path.exists(dirname + "_uncompressed"):
shutil.rmtree(dirname + "_uncompressed")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, help="Task to download")
parser.add_argument(
"--split", type=str, help="Corresponding data split to download"
)
parser.add_argument(
"--keep",
action="store_true",
help="Keep intermediate directories and files upon data retrieval/processing",
)
# Flags for S2EF train/val set preprocessing:
parser.add_argument(
"--get-edges",
action="store_true",
help="Store edge indices in LMDB, ~10x storage requirement. Default: compute edge indices on-the-fly.",
)
parser.add_argument(
"--num-workers",
type=int,
default=1,
help="No. of feature-extracting processes or no. of dataset chunks",
)
parser.add_argument(
"--ref-energy", action="store_true", help="Subtract reference energies"
)
args, _ = parser.parse_known_args()
get_data(task=args.task, split=args.split, del_intmd_files=not args.keep)