forked from MCZhi/GameFormer-Planner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_predictor.py
195 lines (162 loc) · 9.01 KB
/
train_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import csv
import torch
import argparse
import numpy as np
from tqdm import tqdm
from torch import nn, optim
from GameFormer.predictor import GameFormer
from torch.utils.data import DataLoader
from GameFormer.train_utils import *
def train_epoch(data_loader, model, optimizer):
epoch_loss = []
epoch_metrics = []
model.train()
with tqdm(data_loader, desc="Training", unit="batch") as data_epoch:
for batch in data_epoch:
# prepare data
inputs = {
'ego_agent_past': batch[0].to(args.device),
'neighbor_agents_past': batch[1].to(args.device),
'map_lanes': batch[2].to(args.device),
'map_crosswalks': batch[3].to(args.device),
'route_lanes': batch[4].to(args.device)
}
ego_future = batch[5].to(args.device)
neighbors_future = batch[6].to(args.device)
neighbors_future_valid = torch.ne(neighbors_future[..., :2], 0)
# call the mdoel
optimizer.zero_grad()
level_k_outputs, ego_plan = model(inputs)
loss, results = level_k_loss(level_k_outputs, ego_future, neighbors_future, neighbors_future_valid)
prediction = results[:, 1:]
plan_loss = planning_loss(ego_plan, ego_future)
loss += plan_loss
# loss backward
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 5)
optimizer.step()
# compute metrics
metrics = motion_metrics(ego_plan, prediction, ego_future, neighbors_future, neighbors_future_valid)
epoch_metrics.append(metrics)
epoch_loss.append(loss.item())
data_epoch.set_postfix(loss='{:.4f}'.format(np.mean(epoch_loss)))
# show metrics
epoch_metrics = np.array(epoch_metrics)
planningADE, planningFDE = np.mean(epoch_metrics[:, 0]), np.mean(epoch_metrics[:, 1])
planningAHE, planningFHE = np.mean(epoch_metrics[:, 2]), np.mean(epoch_metrics[:, 3])
predictionADE, predictionFDE = np.mean(epoch_metrics[:, 4]), np.mean(epoch_metrics[:, 5])
epoch_metrics = [planningADE, planningFDE, planningAHE, planningFHE, predictionADE, predictionFDE]
logging.info(f"plannerADE: {planningADE:.4f}, plannerFDE: {planningFDE:.4f}, " +
f"plannerAHE: {planningAHE:.4f}, plannerFHE: {planningFHE:.4f}, " +
f"predictorADE: {predictionADE:.4f}, predictorFDE: {predictionFDE:.4f}\n")
return np.mean(epoch_loss), epoch_metrics
def valid_epoch(data_loader, model):
epoch_loss = []
epoch_metrics = []
model.eval()
with tqdm(data_loader, desc="Validation", unit="batch") as data_epoch:
for batch in data_epoch:
# prepare data
inputs = {
'ego_agent_past': batch[0].to(args.device),
'neighbor_agents_past': batch[1].to(args.device),
'map_lanes': batch[2].to(args.device),
'map_crosswalks': batch[3].to(args.device),
'route_lanes': batch[4].to(args.device)
}
ego_future = batch[5].to(args.device)
neighbors_future = batch[6].to(args.device)
neighbors_future_valid = torch.ne(neighbors_future[..., :2], 0)
# call the mdoel
with torch.no_grad():
level_k_outputs, ego_plan = model(inputs)
loss, results = level_k_loss(level_k_outputs, ego_future, neighbors_future, neighbors_future_valid)
prediction = results[:, 1:]
plan_loss = planning_loss(ego_plan, ego_future)
loss += plan_loss
# compute metrics
metrics = motion_metrics(ego_plan, prediction, ego_future, neighbors_future, neighbors_future_valid)
epoch_metrics.append(metrics)
epoch_loss.append(loss.item())
data_epoch.set_postfix(loss='{:.4f}'.format(np.mean(epoch_loss)))
epoch_metrics = np.array(epoch_metrics)
planningADE, planningFDE = np.mean(epoch_metrics[:, 0]), np.mean(epoch_metrics[:, 1])
planningAHE, planningFHE = np.mean(epoch_metrics[:, 2]), np.mean(epoch_metrics[:, 3])
predictionADE, predictionFDE = np.mean(epoch_metrics[:, 4]), np.mean(epoch_metrics[:, 5])
epoch_metrics = [planningADE, planningFDE, planningAHE, planningFHE, predictionADE, predictionFDE]
logging.info(f"val-plannerADE: {planningADE:.4f}, val-plannerFDE: {planningFDE:.4f}, " +
f"val-plannerAHE: {planningAHE:.4f}, val-plannerFHE: {planningFHE:.4f}, " +
f"val-predictorADE: {predictionADE:.4f}, val-predictorFDE: {predictionFDE:.4f}\n")
return np.mean(epoch_loss), epoch_metrics
def model_training():
# Logging
log_path = f"./training_log/{args.name}/"
os.makedirs(log_path, exist_ok=True)
initLogging(log_file=log_path+'train.log')
logging.info("------------- {} -------------".format(args.name))
logging.info("Batch size: {}".format(args.batch_size))
logging.info("Learning rate: {}".format(args.learning_rate))
logging.info("Use device: {}".format(args.device))
# set seed
set_seed(args.seed)
# set up model
gameformer = GameFormer(encoder_layers=args.encoder_layers, decoder_levels=args.decoder_levels, neighbors=args.num_neighbors)
gameformer = gameformer.to(args.device)
logging.info("Model Params: {}".format(sum(p.numel() for p in gameformer.parameters())))
# set up optimizer
optimizer = optim.AdamW(gameformer.parameters(), lr=args.learning_rate)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10, 12, 14, 16, 18], gamma=0.5)
# training parameters
train_epochs = args.train_epochs
batch_size = args.batch_size
# set up data loaders
train_set = DrivingData(args.train_set + '/*.npz', args.num_neighbors)
valid_set = DrivingData(args.valid_set + '/*.npz', args.num_neighbors)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=os.cpu_count())
valid_loader = DataLoader(valid_set, batch_size=batch_size, shuffle=False, num_workers=os.cpu_count())
logging.info("Dataset Prepared: {} train data, {} validation data\n".format(len(train_set), len(valid_set)))
# begin training
for epoch in range(train_epochs):
logging.info(f"Epoch {epoch+1}/{train_epochs}")
train_loss, train_metrics = train_epoch(train_loader, gameformer, optimizer)
val_loss, val_metrics = valid_epoch(valid_loader, gameformer)
# save to training log
log = {'epoch': epoch+1, 'loss': train_loss, 'lr': optimizer.param_groups[0]['lr'], 'val-loss': val_loss,
'train-planningADE': train_metrics[0], 'train-planningFDE': train_metrics[1],
'train-planningAHE': train_metrics[2], 'train-planningFHE': train_metrics[3],
'train-predictionADE': train_metrics[4], 'train-predictionFDE': train_metrics[5],
'val-planningADE': val_metrics[0], 'val-planningFDE': val_metrics[1],
'val-planningAHE': val_metrics[2], 'val-planningFHE': val_metrics[3],
'val-predictionADE': val_metrics[4], 'val-predictionFDE': val_metrics[5]}
if epoch == 0:
with open(f'./training_log/{args.name}/train_log.csv', 'w') as csv_file:
writer = csv.writer(csv_file)
writer.writerow(log.keys())
writer.writerow(log.values())
else:
with open(f'./training_log/{args.name}/train_log.csv', 'a') as csv_file:
writer = csv.writer(csv_file)
writer.writerow(log.values())
# reduce learning rate
scheduler.step()
# save model at the end of epoch
torch.save(gameformer.state_dict(), f'training_log/{args.name}/model_epoch_{epoch+1}_valADE_{val_metrics[0]:.4f}.pth')
logging.info(f"Model saved in training_log/{args.name}\n")
if __name__ == "__main__":
# Arguments
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--name', type=str, help='log name (default: "Exp1")', default="Exp1")
parser.add_argument('--train_set', type=str, help='path to train data')
parser.add_argument('--valid_set', type=str, help='path to validation data')
parser.add_argument('--seed', type=int, help='fix random seed', default=3407)
parser.add_argument('--encoder_layers', type=int, help='number of encoding layers', default=3)
parser.add_argument('--decoder_levels', type=int, help='levels of reasoning', default=2)
parser.add_argument('--num_neighbors', type=int, help='number of neighbor agents to predict', default=10)
parser.add_argument('--train_epochs', type=int, help='epochs of training', default=20)
parser.add_argument('--batch_size', type=int, help='batch size (default: 32)', default=32)
parser.add_argument('--learning_rate', type=float, help='learning rate (default: 1e-4)', default=1e-4)
parser.add_argument('--device', type=str, help='run on which device (default: cuda)', default='cuda')
args = parser.parse_args()
# Run
model_training()