forked from wyhsirius/g3an-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
44 lines (30 loc) · 983 Bytes
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import pandas as pd
import random
from PIL import Image
from torch.utils.data import Dataset
import os
import glob
class UVA(Dataset):
def __init__(self, data_path, transform=None):
self.data_path = data_path
self.step = [2, 3]
self.vids = os.listdir(self.data_path)
self.transform = transform
def __getitem__(self, idx):
video_path = os.path.join(self.data_path, self.vids[idx])
frames = sorted(glob.glob(video_path + '/*.jpg'))
nframes = len(frames)
step = random.sample(self.step, 1)[0]
start_idx = random.randint(0, nframes-16 * step)
vid = [Image.open(frames[start_idx + i * step]).convert('RGB') for i in range(16)]
if self.transform is not None:
vid = self.transform(vid)
return vid
def __len__(self):
return len(self.vids)
if __name__ == '__main__':
data_path = '/data/stars/user/yaowang/data/UVA/crop_faces/data/'
dataset = UVA(data_path)
for i in range(len(dataset)):
vid = dataset.__getitem__(i)
print(len(vid))