-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdistributed_utils.py
213 lines (179 loc) · 6.26 KB
/
distributed_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import pickle
import torch
import torch.distributed as dist
__all__ = [
'get_rank', 'get_world_size', 'is_main_process', 'ddp_barrier',
'synchronize', 'all_reduce', 'all_gather_tensor', 'all_gather'
]
def get_world_size():
"""
get distributed worker number
:return:
"""
if not dist.is_available():
return 1
if not dist.is_initialized():
return 1
return dist.get_world_size()
def ddp_barrier():
"""In DDP mode, this function will synchronize all processes.
torch.distributed.barrier() will block processes until the whole
group enters this function.
"""
if torch.distributed.is_initialized():
torch.distributed.barrier()
def get_rank():
"""
get current rank
:return: rank id if enable distributed
"""
if not dist.is_available():
return 0
if not dist.is_initialized():
return 0
return dist.get_rank()
def synchronize():
"""
Helper function to synchronize (barrier) among all processes when
using distributed training
"""
if not dist.is_available():
return
if not dist.is_initialized():
return
world_size = dist.get_world_size()
if world_size == 1:
return
dist.barrier()
def is_main_process():
"""
check current process is main or not
:return: return True if current process is the main else return False
"""
return get_rank() == 0
def all_reduce(x, reduction='sum'):
"""
do reduction(sum) across multi-gpus
:param x: tensor or list of tensors:
:param reduction: reduction type, support "sum" and "mean"
:return: reduced tensor
"""
if get_world_size() <= 1:
return x
assert reduction in [
'sum', 'mean'
], 'only support reduction type: "sum", "mean", got {}'.format(reduction)
is_dict = isinstance(x, dict)
if is_dict:
for k, v in x.items():
rt = v.clone()
dist.all_reduce(rt, op=torch.distributed.ReduceOp.SUM)
if reduction == 'mean':
rt /= get_world_size()
x[k] = rt
return x
else:
rt = x.clone()
dist.all_reduce(rt, op=torch.distributed.ReduceOp.SUM)
if reduction == 'mean':
rt /= get_world_size()
return rt
def all_gather_tensor(tensor):
"""
Run all_gather on tensors, all tensors must with same dtype
Args:
tensor: tensor on each rank, can be different in size and shape
Returns:
list tensor: list of tensors from each rank
"""
with torch.no_grad():
world_size = get_world_size()
rank = get_rank()
if world_size == 1:
return [tensor]
# transfer tensor to gpu
if not tensor.is_cuda:
tensor = tensor.cuda()
# gathering tensors of different shapes
tensor_list = []
# obtain Tensor size and dims of each rank
local_size = int(tensor.numel())
local_dim = int(tensor.dim())
local_size_dims = torch.as_tensor([local_size, local_dim],
dtype=torch.int64).cuda()
# all gather the max size and max dims from all ranks
size_dims_list = [
torch.as_tensor([0, 0], dtype=torch.int64).cuda()
for _ in range(world_size)
]
dist.all_gather(size_dims_list, local_size_dims)
size_list = [int(size[0].item()) for size in size_dims_list]
dims_list = [int(dim[1].item()) for dim in size_dims_list]
max_dims = max(dims_list)
max_size = max(size_list)
# obtain original shape, dtype
tensor_shape = [i for i in tensor.shape]
if len(tensor_shape) < max_dims:
tensor_shape.extend(
[0 for _ in range(max_dims - len(tensor_shape))])
tensor_shape = torch.as_tensor([tensor_shape], dtype=torch.int64).cuda()
# all gather the shape from all ranks
shape_list = [
torch.zeros(size=(max_dims, ), dtype=torch.int64).cuda()
for _ in range(world_size)
]
dist.all_gather(shape_list, tensor_shape)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
for _ in range(world_size):
tensor_list.append(
torch.zeros(size=(max_size, ), dtype=tensor.dtype).cuda())
if local_size != max_size:
padding = torch.zeros(size=(max_size - local_size, ),
dtype=tensor.dtype).cuda()
tensor = torch.cat((tensor.view(-1), padding), dim=0)
dist.all_gather(tensor_list, tensor)
res = list()
for i in range(world_size):
shape = shape_list[i].cpu().tolist()[:dims_list[i]]
tmp = tensor_list[i][:size_list[i]].view(shape)
res.append(tmp)
return res
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).cuda()
# obtain Tensor size of each rank
local_size = torch.LongTensor([tensor.numel()]).cuda()
size_list = [torch.LongTensor([0]).cuda() for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.ByteTensor(size=(max_size, )).cuda())
if local_size != max_size:
padding = torch.ByteTensor(size=(max_size - local_size, )).cuda()
tensor = torch.cat((tensor, padding), dim=0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list