forked from xiaoyaoworm/Leetcode-java
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path279_numSquares.java
44 lines (40 loc) · 1.37 KB
/
279_numSquares.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
//想较楼下的LTE解法优化了一步,我们只把下面解法的j跳着走即可,我们只需要考虑j是平方和的情况。dp[j] = 1, dp[i] = Math.max(dp[i], dp[i-j*j]+1)
public class Solution {
public int numSquares(int n) {
int[] dp = new int[n+1];
dp[0] = 0;
Arrays.fill(dp, Integer.MAX_VALUE);
for(int i = 1; i*i <= n; i++){
dp[i*i] = 1;//Attention, here is dp[i*i];
}
for(int i = 1; i <= n; i++){
if(dp[i]!= 1){
int j = 1;
while(j*j <= i){
dp[i] = Math.min(dp[i],dp[i-j*j]+1);
j++;
}
}
}
return dp[n];
}
}
//TLE解法,简单的DP解法。标记所有的平方数为1,非平方数检查所有前面任意两个index和为当前index的和,最小即为结果。
public class Solution {
public int numSquares(int n) {
int[] dp = new int[n+1];
dp[0] = 0;
Arrays.fill(dp, Integer.MAX_VALUE);
for(int i = 1; i*i <= n; i++){
dp[i*i] = 1;//Attention, here is dp[i*i];
}
for(int i = 1; i <= n; i++){
if(dp[i] != 1){
for(int j = 1; j < i; j++){
dp[i] = Math.min(dp[i], dp[i-j]+dp[j]);
}
}
}
return dp[n];
}
}