forked from data61/MP-SPDZ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
process-tf.py
executable file
·163 lines (149 loc) · 6.08 KB
/
process-tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python3
import sys
from functools import reduce
import operator
import math
filename = sys.argv[1]
import tensorflow as tf
from tensorflow.core.framework import graph_pb2
import numpy
graph_def = graph_pb2.GraphDef()
graph_def.ParseFromString(open(filename, mode='rb').read())
tf.import_graph_def(graph_def)
graph = tf.compat.v1.get_default_graph()
first = True
paddings = {}
print('ml.Layer.input_bias = False')
def output(op, layer, prev_input=True):
global first
print('named["%s"] = %s' % (op.name, layer))
print('layers.append(named["%s"])' % op.name)
if prev_input and not first:
print('named["%s"].inputs = [named["%s"]]' % (op.name,
op.inputs[0].name[:-2]))
first = False
def link(dest, source):
print('named["%s"] = named["%s"]' % (dest.name, source.name))
def source(dest):
print('named["%s"] = None' % dest.name)
def activate_bias(op):
print('named["%s"].input_bias = True' % op.name)
def get_shape(shape):
res = []
for x in shape:
try:
res.append(int(x))
except:
res.append(1)
return res
def get_valid_padding(input_shape, window, strides):
return [int(math.ceil((x - y + 1) / z))
for x, y, z in zip(input_shape, window, strides)]
for op in graph.get_operations():
if op.inputs:
shape = get_shape(op.inputs[0].shape)
else:
shape = None
t = op.type
if t in ('VariableV2', 'Const', 'Assign', 'NoOp', 'Fill', 'VarHandleOp'):
source(op)
elif t in ('Reshape', 'Squeeze', 'Identity', 'VarIsInitializedOp', 'ReadVariableOp',
'AssignVariableOp'):
link(op, op.inputs[0].op)
elif t == 'Placeholder':
source(op)
elif t == 'MatMul':
#print (op.inputs[0].shape)
assert reduce(operator.mul, shape) == op.inputs[1].shape[0]
output(op, 'ml.Dense(1, %d, %d)' % (op.inputs[1].shape[0],
op.inputs[1].shape[1]))
shape = [1, int(op.inputs[1].shape[1])]
elif t == 'Conv2D':
strides = op.get_attr('strides')
assert len(strides) == 4
assert strides[0] == 1
assert strides[3] == 1
strides = tuple(strides[1:3])
input_shape = get_shape(op.inputs[0].shape)
assert len(input_shape) == 4
window = [int(x) for x in op.inputs[1].shape]
padding = op.get_attr('padding').decode('u8')
if padding not in ('SAME', 'VALID'):
padding = get_shape(padding)
if op.inputs[0].op.name in paddings:
assert padding == 'VALID'
input_shape = get_shape(op.inputs[0].op.inputs[0].shape)
p = paddings.pop(op.inputs[0].op.name)
for i in 0, 6:
assert p[i] == 0
padding = [p[2], p[4]]
output_shape = get_shape(op.outputs[0].shape)
assert len(output_shape) == 4
output(op, 'ml.FixConv2d(%s, %s, %s, %s, %s, %s, True, '
'inputs=[named["%s"]])' % \
(input_shape, tuple(window), (window[3],), output_shape, strides,
repr(padding), op.inputs[0].op.name))
elif t in ('Add', 'AddV2') and op.inputs[1].op.type != 'VariableV2':
output(op, 'ml.Add([%s])' % ','.join('named["%s"]' % x.op.name
for x in op.inputs), False)
elif t in ('Add', 'BiasAdd'):
assert op.inputs[0].op.type in ('MatMul', 'Conv2D')
activate_bias(op.inputs[0].op)
link(op, op.inputs[0].op)
elif t == 'Relu':
assert len(op.inputs) == 1
output(op, 'ml.Relu(%s, inputs=[named["%s"]])' % (shape,
op.inputs[0].op.name))
elif t == 'Square':
output(op, 'ml.Square(%s)' % (shape,))
elif t == 'MaxPool':
strides = op.get_attr('strides')
ksize = op.get_attr('ksize')
padding = str(op.get_attr('padding').decode('u8'))
output(op, 'ml.MaxPool(%s, %s, %s, "%s")' % (shape, strides, ksize,
padding))
elif t == 'AvgPool':
filter_size = op.get_attr('ksize')
assert len(filter_size) == 4
assert filter_size[0] == 1
assert filter_size[-1] == 1
input_shape = get_shape(op.inputs[0].shape)
strides = get_shape(op.get_attr('strides'))
assert strides[0] == 1
assert strides[3] == 1
padding = op.get_attr('padding').decode('u8')
if padding == 'VALID':
output_shape = get_valid_padding(input_shape, filter_size, strides)
elif padding == 'SAME':
output_shape = [int(math.ceil(x / y))
for x, y in zip(input_shape, filter_size)]
else:
raise Exception('unknown padding type: %s' % padding)
output(op, 'ml.FixAveragePool2d(%s, %s, %s, %s)' %
(input_shape, output_shape, filter_size[1:3], strides[1:3]))
elif t == 'ArgMax':
assert len(op.inputs) == 2
shape = get_shape(op.inputs[0].shape)
dim = int(op.inputs[1].op.get_attr('value').int_val[0])
for i in range(1, len(shape)):
if i != dim:
assert shape[i] == 1
output(op, 'ml.Argmax((1, %s))' % shape[dim])
elif t == 'ConcatV2':
assert len(op.inputs) == 3
dim = int(op.inputs[2].op.get_attr('value').int_val[0])
output(op, 'ml.Concat([%s], %s)' % (
','.join('named["%s"]' % x.name[:-2] for x in op.inputs[:2]), dim),
prev_input=False)
elif t in ('FusedBatchNorm', 'FusedBatchNormV3'):
output(op, 'ml.FusedBatchNorm(%s, inputs=[named["%s"]])' %
(get_shape(op.inputs[0].shape), op.inputs[0].op.name))
elif t == 'Pad':
paddings[op.name] = numpy.fromstring(op.inputs[1].op.get_attr('value').
tensor_content, 'int32').tolist()
link(op, op.inputs[0].op)
else:
raise Exception('unknown type: %s' % t)
if paddings:
raise Exception('padding layers only supported before valid convolution:',
paddings)