Skip to content

Latest commit

 

History

History
214 lines (150 loc) · 4.93 KB

518.coin-change-2.md

File metadata and controls

214 lines (150 loc) · 4.93 KB

题目地址(518. 零钱兑换 II)

https://leetcode-cn.com/problems/coin-change-2/

题目描述

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:

输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额 2 的硬币不能凑成总金额 3。
示例 3:

输入: amount = 10, coins = [10]
输出: 1

注意:

你可以假设:

0 <= amount (总金额) <= 5000
1 <= coin (硬币面额) <= 5000
硬币种类不超过 500 种
结果符合 32 位符号整数

前置知识

公司

  • 阿里
  • 百度
  • 字节

思路

这个题目和 coin-change 的思路比较类似。

进一步我们可以对问题进行空间复杂度上的优化(这种写法比较难以理解,但是相对更省空间)

用 dp[i] 来表示组成 i 块钱,需要最少的硬币数,那么

  1. 第 j 个硬币我可以选择不拿 这个时候, 组成数 = dp[i]

  2. 第 j 个硬币我可以选择拿 这个时候, 组成数 = dp[i - coins[j]] + dp[i]

  • 和 01 背包问题不同, 硬币是可以拿任意个,属于完全背包问题

  • 对于每一个 dp[i] 我们都选择遍历一遍 coin, 不断更新 dp[i]

eg:

if (amount === 0) return 1;

const dp = [Array(amount + 1).fill(1)];

for (let i = 1; i < amount + 1; i++) {
  dp[i] = Array(coins.length + 1).fill(0);
  for (let j = 1; j < coins.length + 1; j++) {
    // 从1开始可以简化运算
    if (i - coins[j - 1] >= 0) {
      // 注意这里是coins[j -1]而不是coins[j]
      dp[i][j] = dp[i][j - 1] + dp[i - coins[j - 1]][j]; // 由于可以重复使用硬币所以这里是j不是j-1
    } else {
      dp[i][j] = dp[i][j - 1];
    }
  }
}

return dp[dp.length - 1][coins.length];
  • 当我们选择一维数组去解的时候,内外循环将会对结果造成影响

eg:

// 这种答案是不对的。
// 原因在于比如amount = 5, coins = [1,2,5]
// 这种算法会将[1,2,2] [2,1,2] [2, 2, 1] 算成不同的

if (amount === 0) return 1;

const dp = [1].concat(Array(amount).fill(0));

for (let i = 1; i < amount + 1; i++) {
  for (let j = 0; j < coins.length; j++) {
    if (i - coins[j] >= 0) {
      dp[i] = dp[i] + dp[i - coins[j]];
    }
  }
}

return dp[dp.length - 1];

// 正确的写法应该是内外循环调换一下, 具体可以看下方代码区

关键点解析

  • 动态规划

代码

代码支持:Python3,JavaScript:

JavaSCript Code:

/*
 * @lc app=leetcode id=518 lang=javascript
 *
 * [518] Coin Change 2
 *
 */
/**
 * @param {number} amount
 * @param {number[]} coins
 * @return {number}
 */
var change = function (amount, coins) {
  if (amount === 0) return 1;

  const dp = [1].concat(Array(amount).fill(0));

  for (let j = 0; j < coins.length; j++) {
    for (let i = 1; i < amount + 1; i++) {
      if (i - coins[j] >= 0) {
        dp[i] = dp[i] + dp[i - coins[j]];
      }
    }
  }

  return dp[dp.length - 1];
};

Python Code:

class Solution:
    def change(self, amount: int, coins: List[int]) -> int:
        dp = [0] * (amount + 1)
        dp[0] = 1

        for j in range(len(coins)):
            for i in range(1, amount + 1):
                if i >= coins[j]:
                    dp[i] += dp[i - coins[j]]

        return dp[-1]

复杂度分析

  • 时间复杂度:$$O(amount)$$
  • 空间复杂度:$$O(amount * len(coins))$$

扩展1

这是一道很简单描述的题目, 因此很多时候会被用到大公司的电面中。

相似问题:

322.coin-change

扩展2

Python 二维解法(不推荐,但是可以帮助理解):

class Solution:
    def change(self, amount: int, coins: List[int]) -> int:
        dp = [[0 for _ in range(len(coins) + 1)] for _ in range(amount + 1)]
        for j in range(len(coins) + 1):
            dp[0][j] = 1

        for i in range(amount + 1):
            for j in range(1, len(coins) + 1):
                if i >= coins[j - 1]:
                    dp[i][j] = dp[i - coins[j - 1]][j] + dp[i][j - 1]
                else:
                    dp[i][j] = dp[i][j - 1]
        return dp[-1][-1]

复杂度分析

  • 时间复杂度:$$O(amount * len(coins))$$
  • 空间复杂度:$$O(amount * len(coins))$$

大家对此有何看法,欢迎给我留言,我有时间都会一一查看回答。更多算法套路可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 37K star 啦。

大家也可以关注我的公众号《力扣加加》带你啃下算法这块硬骨头。