-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathrun_doc2vec.py
86 lines (72 loc) · 3.85 KB
/
run_doc2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
'''
Created on Jan, 2017
@author: hugo
'''
from __future__ import absolute_import
import argparse
from os import path
import timeit
import numpy as np
from gensim.models.doc2vec import TaggedDocument
from autoencoder.baseline.doc2vec import MyDoc2Vec, save_doc2vec, load_doc2vec, predict
from autoencoder.utils.io_utils import load_json, dump_json, write_file
from autoencoder.preprocessing.preprocessing import load_corpus
from autoencoder.datasets.the20news import CorpusIter20News
# from autoencoder.datasets.movie_review_data import CorpusIterMRD
# from autoencoder.datasets.wiki10plus import CorpusIterWiki10plus
# from autoencoder.datasets.reuters import CorpusIterReuters
def train(args):
vocab = load_json(args.vocab)
# import pdb;pdb.set_trace()
# load corpus
corpus = CorpusIter20News(args.corpus[0], recursive=True, stem=True, with_docname=True)
# corpus = CorpusIterMRD(args.corpus[0], load_json(args.docnames), stem=True, with_docname=True)
# corpus = CorpusIterWiki10plus(args.corpus[0], load_json(args.docnames), stem=True, with_docname=True)
# corpus = CorpusIterReuters(args.corpus, load_json(args.docnames), with_docname=True)
corpus_iter = lambda: (TaggedDocument([word for word in sentence if word in vocab], tag) for sentence, tag in corpus)
d2v = MyDoc2Vec(args.n_dim, window=args.window_size, \
negative=args.negative, epoches=args.n_epoch, dm_concat=1)
start = timeit.default_timer()
d2v.train(corpus_iter)
print 'runtime: %ss' % (timeit.default_timer() - start)
save_doc2vec(d2v.model, args.save_model)
import pdb;pdb.set_trace()
def test(args):
vocab = load_json(args.vocab)
# load corpus
corpus = CorpusIter20News(args.corpus[0], recursive=True, stem=True, with_docname=True)
# corpus = CorpusIterMRD(args.corpus[0], load_json(args.docnames), stem=True, with_docname=True)
# corpus = CorpusIterWiki10plus(args.corpus[0], load_json(args.docnames), stem=True, with_docname=True)
# corpus = CorpusIterReuters(args.corpus, load_json(args.docnames), with_docname=True)
corpus_iter = lambda: (TaggedDocument([word for word in sentence if word in vocab], tag) for sentence, tag in corpus)
d2v = load_doc2vec(args.load_model)
doc_codes = predict(d2v, corpus_iter)
dump_json(doc_codes, args.output)
import pdb;pdb.set_trace()
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--train', action='store_true', help='train flag')
parser.add_argument('--corpus', nargs='*', required=True, type=str, help='path to the corpus dir')
parser.add_argument('-doc', '--docnames', type=str, help='path to the docnames file (in training phase)')
parser.add_argument('--vocab', required=True, type=str, help='path to the vocab file')
parser.add_argument('-ne', '--n_epoch', type=int, help='num of epoches')
parser.add_argument('-nd', '--n_dim', type=int, help='num of dimensions')
parser.add_argument('-ws', '--window_size', type=int, help='window size')
parser.add_argument('-neg', '--negative', type=int, help='num of negative samples')
parser.add_argument('-sm', '--save_model', type=str, default='w2v.mod', help='path to the output model')
parser.add_argument('-lm', '--load_model', type=str, help='path to the trained model')
parser.add_argument('-o', '--output', type=str, help='path to the output doc codes file')
args = parser.parse_args()
if args.train:
if not args.n_epoch or not args.n_dim or \
not args.window_size or not args.negative:
raise Exception('n_epoch, n_dim, window_size and negative args needed in test phase')
train(args)
else:
if not args.output:
raise Exception('output arg needed in test phase')
if not args.load_model:
raise Exception('load_model arg needed in test phase')
test(args)
if __name__ == '__main__':
main()