forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FbgemmI8Spmdm.cc
318 lines (286 loc) · 9.95 KB
/
FbgemmI8Spmdm.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/*
* Copyright (c) Facebook, Inc. and its affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include "fbgemm/FbgemmI8Spmdm.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <cstring>
#include "OptimizedKernelsAvx2.h"
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
double spmdm_initial_time = 0.0;
double spmdm_transpose_uint8_time = 0.0;
double spmdm_transpose_32xN_time = 0.0;
double spmdm_compute_time = 0.0;
double spmdm_transpose_Nx32_time = 0.0;
double spmdm_run_time = 0.0;
double sconv_run_time = 0.0;
#endif
using namespace std;
namespace fbgemm {
CompressedSparseColumn::CompressedSparseColumn(int num_of_rows, int num_of_cols)
: num_rows_(num_of_rows),
colptr_(num_of_cols + 1),
hyper_sparse_(false),
old_nnz_(-1) {}
double CompressedSparseColumn::Density() const {
return static_cast<double>(NumOfNonZeros()) / (NumOfRows() * NumOfCols());
}
bool CompressedSparseColumn::IsHyperSparse() const {
if (NumOfNonZeros() != old_nnz_) {
old_nnz_ = NumOfNonZeros();
// The number of non-zero per row is very small.
hyper_sparse_ = static_cast<double>(old_nnz_) / NumOfRows() < 0.3;
}
return hyper_sparse_;
}
// TODO: fallback when AVX2 is not available
void CompressedSparseColumn::SpMDM(
const block_type_t& block,
const uint8_t* A,
int lda,
bool accumulation,
int32_t* C,
int ldc) const {
int K = NumOfRows();
int N = block.col_size;
if (K == 0 || N == 0) {
return;
}
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
std::chrono::time_point<std::chrono::high_resolution_clock> t_very_start,
t_start, t_end;
double dt;
t_start = std::chrono::high_resolution_clock::now();
t_very_start = std::chrono::high_resolution_clock::now();
#endif
alignas(64) uint8_t A_buffer[K * 32];
alignas(64) int32_t C_buffer[N * 32];
// If we compute C = C + A * B, where B is a sparse matrix in CSC format, for
// each non-zero in B, we'd need to access the corresponding column in A.
// This results in strided access, which we want to avoid.
// Instead, we pre-transpose A and C, and compute C = (C^T + B^T * A^T)^T
if (IsHyperSparse()) {
// The cost of transpose is O(K*N) and we do O(NNZ*N) multiplications.
// If NNZ/K is small, it's not worth doing transpose so we just use this
// scalar loop.
int32_t C_temp[block.row_size];
if (accumulation) {
for (int j = 0; j < block.col_size; ++j) {
int k = colptr_[block.col_start + j];
int k_end = colptr_[block.col_start + j + 1];
if (k_end == k) {
} else if (k_end == k + 1) {
int row = rowidx_[k];
int w = values_[k];
for (int i = 0; i < block.row_size; ++i) {
C[i * ldc + j] += A[(block.row_start + i) * lda + row] * w;
}
} else {
for (int i = 0; i < block.row_size; ++i) {
C_temp[i] = C[i * ldc + j];
}
for (; k < k_end; ++k) {
int row = rowidx_[k];
int w = values_[k];
for (int i = 0; i < block.row_size; ++i) {
C_temp[i] += A[(block.row_start + i) * lda + row] * w;
}
}
for (int i = 0; i < block.row_size; ++i) {
C[i * ldc + j] = C_temp[i];
}
}
} // for each column of B
} else {
for (int j = 0; j < block.col_size; ++j) {
int k = colptr_[block.col_start + j];
int k_end = colptr_[block.col_start + j + 1];
if (k_end == k) {
for (int i = 0; i < block.row_size; ++i) {
C[i * ldc + j] = 0;
}
} else if (k_end == k + 1) {
int row = rowidx_[k];
int w = values_[k];
for (int i = 0; i < block.row_size; ++i) {
C[i * ldc + j] = A[(block.row_start + i) * lda + row] * w;
}
} else {
for (int i = 0; i < block.row_size; ++i) {
C_temp[i] = 0;
}
for (; k < k_end; ++k) {
int row = rowidx_[k];
int w = values_[k];
for (int i = 0; i < block.row_size; ++i) {
C_temp[i] += A[(block.row_start + i) * lda + row] * w;
}
}
for (int i = 0; i < block.row_size; ++i) {
C[i * ldc + j] = C_temp[i];
}
}
} // for each column of B
}
return;
}
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
t_end = std::chrono::high_resolution_clock::now();
dt = std::chrono::duration_cast<std::chrono::nanoseconds>(t_end - t_start)
.count();
spmdm_initial_time += (dt);
t_start = std::chrono::high_resolution_clock::now();
#endif
// Take 32 rows at a time
int i_end = block.row_start + block.row_size;
for (int i1 = block.row_start; i1 < i_end; i1 += 32) {
// Transpose 32 x K submatrix of A
if (i_end - i1 < 32) {
alignas(64) uint8_t A_temp_buffer[K * 32];
for (int i2 = 0; i2 < (i_end - i1) / 8 * 8; i2 += 8) {
transpose_8rows(K, A + (i1 + i2) * lda, lda, A_buffer + i2, 32);
}
for (int i2 = (i_end - i1) / 8 * 8; i2 < i_end - i1; ++i2) {
memcpy(
A_temp_buffer + i2 * K, A + (i1 + i2) * lda, K * sizeof(uint8_t));
}
memset(
A_temp_buffer + (i_end - i1) * K,
0,
(32 - (i_end - i1)) * K * sizeof(uint8_t));
for (int i2 = (i_end - i1) / 8 * 8; i2 < 32; i2 += 8) {
transpose_8rows(K, A_temp_buffer + i2 * K, K, A_buffer + i2, 32);
}
} else {
for (int i2 = 0; i2 < 32; i2 += 8) {
transpose_8rows(K, A + (i1 + i2) * lda, lda, A_buffer + i2, 32);
}
}
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
t_end = std::chrono::high_resolution_clock::now();
dt = std::chrono::duration_cast<std::chrono::nanoseconds>(t_end - t_start)
.count();
spmdm_transpose_uint8_time += (dt);
t_start = std::chrono::high_resolution_clock::now();
#endif
if (accumulation) {
// Transpose 32 x N submatrix of C to fill N x 32 C_buffer
transpose_simd(
std::min(32, i_end - i1),
N,
reinterpret_cast<const float*>(C + (i1 - block.row_start) * ldc),
ldc,
reinterpret_cast<float*>(C_buffer),
32);
} else {
memset(C_buffer, 0, N * 32 * sizeof(int32_t));
}
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
t_end = std::chrono::high_resolution_clock::now();
dt = std::chrono::duration_cast<std::chrono::nanoseconds>(t_end - t_start)
.count();
spmdm_transpose_32xN_time += (dt);
t_start = std::chrono::high_resolution_clock::now();
#endif
spmdmKernelAvx2(
block.col_size,
A_buffer,
colptr_.data() + block.col_start,
values_.data(),
rowidx_.data(),
C_buffer);
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
t_end = std::chrono::high_resolution_clock::now();
dt = std::chrono::duration_cast<std::chrono::nanoseconds>(t_end - t_start)
.count();
spmdm_compute_time += (dt);
t_start = std::chrono::high_resolution_clock::now();
#endif
// Transpose N x 32 C_buffer to fill 32 x N submatrix of C
transpose_simd(
N,
std::min(32, i_end - i1),
reinterpret_cast<const float*>(C_buffer),
32,
reinterpret_cast<float*>(C + (i1 - block.row_start) * ldc),
ldc);
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
t_end = std::chrono::high_resolution_clock::now();
dt = std::chrono::duration_cast<std::chrono::nanoseconds>(t_end - t_start)
.count();
spmdm_transpose_Nx32_time += (dt);
t_start = std::chrono::high_resolution_clock::now();
#endif
}
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
t_end = std::chrono::high_resolution_clock::now();
dt =
std::chrono::duration_cast<std::chrono::nanoseconds>(t_end - t_very_start)
.count();
spmdm_run_time += (dt);
t_start = std::chrono::high_resolution_clock::now();
#endif
}
void CompressedSparseColumn::SparseConv(
const conv_param_t<>& conv_p,
const block_type_t& block,
const uint8_t* A,
int32_t A_zero_point,
bool accumulation,
int32_t* C,
int ldc) const {
int K = NumOfRows();
int N = block.col_size;
if (K == 0 || N == 0) {
return;
}
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
std::chrono::time_point<std::chrono::high_resolution_clock> t_start, t_end;
double dt;
t_start = std::chrono::high_resolution_clock::now();
#endif
// TODO: if not hyper sparse, transpose a block of A matrix as in SpMDM.
if (!accumulation) {
for (int i = block.row_start; i < block.row_start + block.row_size; ++i) {
for (int j = block.col_start; j < block.col_start + block.col_size; ++j) {
C[(i - block.row_start) * ldc + j - block.col_start] = 0;
}
}
}
for (int j = block.col_start; j < block.col_start + block.col_size; ++j) {
for (int k = colptr_[j]; k < colptr_[j + 1]; ++k) {
int v = values_[k];
for (int i = block.row_start; i < block.row_start + block.row_size; ++i) {
int ow = i % conv_p.OUT_DIM[1];
int oh = i / conv_p.OUT_DIM[1] % conv_p.OUT_DIM[0];
int n = i / conv_p.OUT_DIM[1] / conv_p.OUT_DIM[0];
assert(n < conv_p.MB);
int iw = -conv_p.pad[1] + ow * conv_p.stride[1] + kw_[k];
int ih = -conv_p.pad[0] + oh * conv_p.stride[0] + kh_[k];
if (ih >= 0 && ih < conv_p.IN_DIM[0] && iw >= 0 &&
iw < conv_p.IN_DIM[1]) {
C[(i - block.row_start) * ldc + j - block.col_start] +=
A[((n * conv_p.IN_DIM[0] + ih) * conv_p.IN_DIM[1] + iw) *
conv_p.IC +
ic_[k]] *
v;
} else {
C[(i - block.row_start) * ldc + j - block.col_start] +=
A_zero_point * v;
}
}
}
} // for each column of B
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
t_end = std::chrono::high_resolution_clock::now();
dt = std::chrono::duration_cast<std::chrono::nanoseconds>(t_end - t_start)
.count();
sconv_run_time += (dt);
#endif
}
} // namespace fbgemm