forked from kpu/kenlm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinary_format.cc
302 lines (266 loc) · 12.6 KB
/
binary_format.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#include "lm/binary_format.hh"
#include "lm/lm_exception.hh"
#include "util/file.hh"
#include "util/file_piece.hh"
#include <cstddef>
#include <cstring>
#include <limits>
#include <string>
#include <cstdlib>
#include <stdint.h>
namespace lm {
namespace ngram {
const char *kModelNames[6] = {"probing hash tables", "probing hash tables with rest costs", "trie", "trie with quantization", "trie with array-compressed pointers", "trie with quantization and array-compressed pointers"};
namespace {
const char kMagicBeforeVersion[] = "mmap lm http://kheafield.com/code format version";
const char kMagicBytes[] = "mmap lm http://kheafield.com/code format version 5\n\0";
// This must be shorter than kMagicBytes and indicates an incomplete binary file (i.e. build failed).
const char kMagicIncomplete[] = "mmap lm http://kheafield.com/code incomplete\n";
const long int kMagicVersion = 5;
// Old binary files built on 32-bit machines have this header.
// TODO: eliminate with next binary release.
struct OldSanity {
char magic[sizeof(kMagicBytes)];
float zero_f, one_f, minus_half_f;
WordIndex one_word_index, max_word_index;
uint64_t one_uint64;
void SetToReference() {
std::memset(this, 0, sizeof(OldSanity));
std::memcpy(magic, kMagicBytes, sizeof(magic));
zero_f = 0.0; one_f = 1.0; minus_half_f = -0.5;
one_word_index = 1;
max_word_index = std::numeric_limits<WordIndex>::max();
one_uint64 = 1;
}
};
// Test values aligned to 8 bytes.
struct Sanity {
char magic[ALIGN8(sizeof(kMagicBytes))];
float zero_f, one_f, minus_half_f;
WordIndex one_word_index, max_word_index, padding_to_8;
uint64_t one_uint64;
void SetToReference() {
std::memset(this, 0, sizeof(Sanity));
std::memcpy(magic, kMagicBytes, sizeof(kMagicBytes));
zero_f = 0.0; one_f = 1.0; minus_half_f = -0.5;
one_word_index = 1;
max_word_index = std::numeric_limits<WordIndex>::max();
padding_to_8 = 0;
one_uint64 = 1;
}
};
std::size_t TotalHeaderSize(unsigned char order) {
return ALIGN8(sizeof(Sanity) + sizeof(FixedWidthParameters) + sizeof(uint64_t) * order);
}
void WriteHeader(void *to, const Parameters ¶ms) {
Sanity header = Sanity();
header.SetToReference();
std::memcpy(to, &header, sizeof(Sanity));
char *out = reinterpret_cast<char*>(to) + sizeof(Sanity);
*reinterpret_cast<FixedWidthParameters*>(out) = params.fixed;
out += sizeof(FixedWidthParameters);
uint64_t *counts = reinterpret_cast<uint64_t*>(out);
for (std::size_t i = 0; i < params.counts.size(); ++i) {
counts[i] = params.counts[i];
}
}
} // namespace
bool IsBinaryFormat(int fd) {
const uint64_t size = util::SizeFile(fd);
if (size == util::kBadSize || (size <= static_cast<uint64_t>(sizeof(Sanity)))) return false;
// Try reading the header.
util::scoped_memory memory;
try {
util::MapRead(util::LAZY, fd, 0, sizeof(Sanity), memory);
} catch (const util::Exception &e) {
return false;
}
Sanity reference_header = Sanity();
reference_header.SetToReference();
if (!std::memcmp(memory.get(), &reference_header, sizeof(Sanity))) return true;
if (!std::memcmp(memory.get(), kMagicIncomplete, strlen(kMagicIncomplete))) {
UTIL_THROW(FormatLoadException, "This binary file did not finish building");
}
if (!std::memcmp(memory.get(), kMagicBeforeVersion, strlen(kMagicBeforeVersion))) {
char *end_ptr;
const char *begin_version = static_cast<const char*>(memory.get()) + strlen(kMagicBeforeVersion);
long int version = std::strtol(begin_version, &end_ptr, 10);
if ((end_ptr != begin_version) && version != kMagicVersion) {
UTIL_THROW(FormatLoadException, "Binary file has version " << version << " but this implementation expects version " << kMagicVersion << " so you'll have to use the ARPA to rebuild your binary");
}
OldSanity old_sanity = OldSanity();
old_sanity.SetToReference();
UTIL_THROW_IF(!std::memcmp(memory.get(), &old_sanity, sizeof(OldSanity)), FormatLoadException, "Looks like this is an old 32-bit format. The old 32-bit format has been removed so that 64-bit and 32-bit files are exchangeable.");
UTIL_THROW(FormatLoadException, "File looks like it should be loaded with mmap, but the test values don't match. Try rebuilding the binary format LM using the same code revision, compiler, and architecture");
}
return false;
}
void ReadHeader(int fd, Parameters &out) {
util::SeekOrThrow(fd, sizeof(Sanity));
util::ReadOrThrow(fd, &out.fixed, sizeof(out.fixed));
if (out.fixed.probing_multiplier < 1.0)
UTIL_THROW(FormatLoadException, "Binary format claims to have a probing multiplier of " << out.fixed.probing_multiplier << " which is < 1.0.");
out.counts.resize(static_cast<std::size_t>(out.fixed.order));
if (out.fixed.order) util::ReadOrThrow(fd, &*out.counts.begin(), sizeof(uint64_t) * out.fixed.order);
}
void MatchCheck(ModelType model_type, unsigned int search_version, const Parameters ¶ms) {
if (params.fixed.model_type != model_type) {
if (static_cast<unsigned int>(params.fixed.model_type) >= (sizeof(kModelNames) / sizeof(const char *)))
UTIL_THROW(FormatLoadException, "The binary file claims to be model type " << static_cast<unsigned int>(params.fixed.model_type) << " but this is not implemented for in this inference code.");
UTIL_THROW(FormatLoadException, "The binary file was built for " << kModelNames[params.fixed.model_type] << " but the inference code is trying to load " << kModelNames[model_type]);
}
UTIL_THROW_IF(search_version != params.fixed.search_version, FormatLoadException, "The binary file has " << kModelNames[params.fixed.model_type] << " version " << params.fixed.search_version << " but this code expects " << kModelNames[params.fixed.model_type] << " version " << search_version);
}
const std::size_t kInvalidSize = static_cast<std::size_t>(-1);
BinaryFormat::BinaryFormat(const Config &config)
: write_method_(config.write_method), write_mmap_(config.write_mmap), load_method_(config.load_method),
header_size_(kInvalidSize), vocab_size_(kInvalidSize), vocab_string_offset_(kInvalidOffset) {}
void BinaryFormat::InitializeBinary(int fd, ModelType model_type, unsigned int search_version, Parameters ¶ms) {
file_.reset(fd);
write_mmap_ = NULL; // Ignore write requests; this is already in binary format.
ReadHeader(fd, params);
MatchCheck(model_type, search_version, params);
header_size_ = TotalHeaderSize(params.counts.size());
}
void BinaryFormat::ReadForConfig(void *to, std::size_t amount, uint64_t offset_excluding_header) const {
assert(header_size_ != kInvalidSize);
util::ErsatzPRead(file_.get(), to, amount, offset_excluding_header + header_size_);
}
void *BinaryFormat::LoadBinary(std::size_t size) {
assert(header_size_ != kInvalidSize);
const uint64_t file_size = util::SizeFile(file_.get());
// The header is smaller than a page, so we have to map the whole header as well.
uint64_t total_map = static_cast<uint64_t>(header_size_) + static_cast<uint64_t>(size);
UTIL_THROW_IF(file_size != util::kBadSize && file_size < total_map, FormatLoadException, "Binary file has size " << file_size << " but the headers say it should be at least " << total_map);
util::MapRead(load_method_, file_.get(), 0, util::CheckOverflow(total_map), mapping_);
vocab_string_offset_ = total_map;
return reinterpret_cast<uint8_t*>(mapping_.get()) + header_size_;
}
void *BinaryFormat::SetupJustVocab(std::size_t memory_size, uint8_t order) {
vocab_size_ = memory_size;
if (!write_mmap_) {
header_size_ = 0;
util::HugeMalloc(memory_size, true, memory_vocab_);
return reinterpret_cast<uint8_t*>(memory_vocab_.get());
}
header_size_ = TotalHeaderSize(order);
std::size_t total = util::CheckOverflow(static_cast<uint64_t>(header_size_) + static_cast<uint64_t>(memory_size));
file_.reset(util::CreateOrThrow(write_mmap_));
// some gccs complain about uninitialized variables even though all enum values are covered.
void *vocab_base = NULL;
switch (write_method_) {
case Config::WRITE_MMAP:
mapping_.reset(util::MapZeroedWrite(file_.get(), total), total, util::scoped_memory::MMAP_ALLOCATED);
util::AdviseHugePages(vocab_base, total);
vocab_base = mapping_.get();
break;
case Config::WRITE_AFTER:
util::ResizeOrThrow(file_.get(), 0);
util::HugeMalloc(total, true, memory_vocab_);
vocab_base = memory_vocab_.get();
break;
}
strncpy(reinterpret_cast<char*>(vocab_base), kMagicIncomplete, header_size_);
return reinterpret_cast<uint8_t*>(vocab_base) + header_size_;
}
void *BinaryFormat::GrowForSearch(std::size_t memory_size, std::size_t vocab_pad, void *&vocab_base) {
assert(vocab_size_ != kInvalidSize);
vocab_pad_ = vocab_pad;
std::size_t new_size = header_size_ + vocab_size_ + vocab_pad_ + memory_size;
vocab_string_offset_ = new_size;
if (!write_mmap_ || write_method_ == Config::WRITE_AFTER) {
util::HugeMalloc(memory_size, true, memory_search_);
assert(header_size_ == 0 || write_mmap_);
vocab_base = reinterpret_cast<uint8_t*>(memory_vocab_.get()) + header_size_;
util::AdviseHugePages(memory_search_.get(), memory_size);
return reinterpret_cast<uint8_t*>(memory_search_.get());
}
assert(write_method_ == Config::WRITE_MMAP);
// Also known as total size without vocab words.
// Grow the file to accomodate the search, using zeros.
// According to man mmap, behavior is undefined when the file is resized
// underneath a mmap that is not a multiple of the page size. So to be
// safe, we'll unmap it and map it again.
mapping_.reset();
util::ResizeOrThrow(file_.get(), new_size);
void *ret;
MapFile(vocab_base, ret);
util::AdviseHugePages(ret, new_size);
return ret;
}
void BinaryFormat::WriteVocabWords(const std::string &buffer, void *&vocab_base, void *&search_base) {
// Checking Config's include_vocab is the responsibility of the caller.
assert(header_size_ != kInvalidSize && vocab_size_ != kInvalidSize);
if (!write_mmap_) {
// Unchanged base.
vocab_base = reinterpret_cast<uint8_t*>(memory_vocab_.get());
search_base = reinterpret_cast<uint8_t*>(memory_search_.get());
return;
}
if (write_method_ == Config::WRITE_MMAP) {
mapping_.reset();
}
util::SeekOrThrow(file_.get(), VocabStringReadingOffset());
util::WriteOrThrow(file_.get(), &buffer[0], buffer.size());
if (write_method_ == Config::WRITE_MMAP) {
MapFile(vocab_base, search_base);
} else {
vocab_base = reinterpret_cast<uint8_t*>(memory_vocab_.get()) + header_size_;
search_base = reinterpret_cast<uint8_t*>(memory_search_.get());
}
}
void BinaryFormat::FinishFile(const Config &config, ModelType model_type, unsigned int search_version, const std::vector<uint64_t> &counts) {
if (!write_mmap_) return;
switch (write_method_) {
case Config::WRITE_MMAP:
util::SyncOrThrow(mapping_.get(), mapping_.size());
break;
case Config::WRITE_AFTER:
util::SeekOrThrow(file_.get(), 0);
util::WriteOrThrow(file_.get(), memory_vocab_.get(), memory_vocab_.size());
util::SeekOrThrow(file_.get(), header_size_ + vocab_size_ + vocab_pad_);
util::WriteOrThrow(file_.get(), memory_search_.get(), memory_search_.size());
util::FSyncOrThrow(file_.get());
break;
}
// header and vocab share the same mmap.
Parameters params = Parameters();
memset(¶ms, 0, sizeof(Parameters));
params.counts = counts;
params.fixed.order = counts.size();
params.fixed.probing_multiplier = config.probing_multiplier;
params.fixed.model_type = model_type;
params.fixed.has_vocabulary = config.include_vocab;
params.fixed.search_version = search_version;
switch (write_method_) {
case Config::WRITE_MMAP:
WriteHeader(mapping_.get(), params);
util::SyncOrThrow(mapping_.get(), mapping_.size());
break;
case Config::WRITE_AFTER:
{
std::vector<uint8_t> buffer(TotalHeaderSize(counts.size()));
WriteHeader(&buffer[0], params);
util::SeekOrThrow(file_.get(), 0);
util::WriteOrThrow(file_.get(), &buffer[0], buffer.size());
}
break;
}
}
void BinaryFormat::MapFile(void *&vocab_base, void *&search_base) {
mapping_.reset(util::MapOrThrow(vocab_string_offset_, true, util::kFileFlags, false, file_.get()), vocab_string_offset_, util::scoped_memory::MMAP_ALLOCATED);
vocab_base = reinterpret_cast<uint8_t*>(mapping_.get()) + header_size_;
search_base = reinterpret_cast<uint8_t*>(mapping_.get()) + header_size_ + vocab_size_ + vocab_pad_;
}
bool RecognizeBinary(const char *file, ModelType &recognized) {
util::scoped_fd fd(util::OpenReadOrThrow(file));
if (!IsBinaryFormat(fd.get())) {
return false;
}
Parameters params;
ReadHeader(fd.get(), params);
recognized = params.fixed.model_type;
return true;
}
} // namespace ngram
} // namespace lm