forked from kpu/kenlm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.cc
187 lines (168 loc) · 7.53 KB
/
pipeline.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#include "lm/interpolate/pipeline.hh"
#include "lm/common/compare.hh"
#include "lm/common/print.hh"
#include "lm/common/renumber.hh"
#include "lm/vocab.hh"
#include "lm/interpolate/backoff_reunification.hh"
#include "lm/interpolate/interpolate_info.hh"
#include "lm/interpolate/merge_probabilities.hh"
#include "lm/interpolate/merge_vocab.hh"
#include "lm/interpolate/normalize.hh"
#include "lm/interpolate/universal_vocab.hh"
#include "util/stream/chain.hh"
#include "util/stream/count_records.hh"
#include "util/stream/io.hh"
#include "util/stream/multi_stream.hh"
#include "util/stream/sort.hh"
#include "util/fixed_array.hh"
namespace lm { namespace interpolate { namespace {
/* Put the original input files on chains and renumber them */
void SetupInputs(std::size_t buffer_size, const UniversalVocab &vocab, util::FixedArray<ModelBuffer> &models, bool exclude_highest, util::FixedArray<util::stream::Chains> &chains, util::FixedArray<util::stream::ChainPositions> &positions) {
chains.clear();
positions.clear();
// TODO: much better memory sizing heuristics e.g. not making the chain larger than it will use.
util::stream::ChainConfig config(0, 2, buffer_size);
for (std::size_t i = 0; i < models.size(); ++i) {
chains.push_back(models[i].Order() - exclude_highest);
for (std::size_t j = 0; j < models[i].Order() - exclude_highest; ++j) {
config.entry_size = sizeof(WordIndex) * (j + 1) + sizeof(float) * 2; // TODO do not include wasteful backoff for highest.
chains.back().push_back(config);
}
if (i == models.size() - 1)
chains.back().back().ActivateProgress();
models[i].Source(chains.back());
for (std::size_t j = 0; j < models[i].Order() - exclude_highest; ++j) {
chains[i][j] >> Renumber(vocab.Mapping(i), j + 1);
}
}
for (std::size_t i = 0; i < chains.size(); ++i) {
positions.push_back(chains[i]);
}
}
template <class Compare> void SinkSort(const util::stream::SortConfig &config, util::stream::Chains &chains, util::stream::Sorts<Compare> &sorts) {
for (std::size_t i = 0; i < chains.size(); ++i) {
sorts.push_back(chains[i], config, Compare(i + 1));
}
}
template <class Compare> void SourceSort(util::stream::Chains &chains, util::stream::Sorts<Compare> &sorts) {
// TODO memory management
for (std::size_t i = 0; i < sorts.size(); ++i) {
sorts[i].Merge(sorts[i].DefaultLazy());
}
for (std::size_t i = 0; i < sorts.size(); ++i) {
sorts[i].Output(chains[i], sorts[i].DefaultLazy());
}
}
} // namespace
void Pipeline(util::FixedArray<ModelBuffer> &models, const Config &config, int write_file) {
// Setup InterpolateInfo and UniversalVocab.
InterpolateInfo info;
info.lambdas = config.lambdas;
std::vector<WordIndex> vocab_sizes;
util::scoped_fd vocab_null(util::MakeTemp(config.sort.temp_prefix));
std::size_t max_order = 0;
util::FixedArray<int> vocab_files(models.size());
for (ModelBuffer *i = models.begin(); i != models.end(); ++i) {
info.orders.push_back(i->Order());
vocab_sizes.push_back(i->Counts()[0]);
vocab_files.push_back(i->VocabFile());
max_order = std::max(max_order, i->Order());
}
util::scoped_ptr<UniversalVocab> vocab(new UniversalVocab(vocab_sizes));
{
ngram::ImmediateWriteWordsWrapper writer(NULL, vocab_null.get(), 0);
MergeVocab(vocab_files, *vocab, writer);
}
std::cerr << "Merging probabilities." << std::endl;
// Pass 1: merge probabilities
util::FixedArray<util::stream::Chains> input_chains(models.size());
util::FixedArray<util::stream::ChainPositions> models_by_order(models.size());
SetupInputs(config.BufferSize(), *vocab, models, false, input_chains, models_by_order);
util::stream::Chains merged_probs(max_order);
for (std::size_t i = 0; i < max_order; ++i) {
merged_probs.push_back(util::stream::ChainConfig(PartialProbGamma::TotalSize(info, i + 1), 2, config.BufferSize())); // TODO: not buffer_size
}
merged_probs >> MergeProbabilities(info, models_by_order);
std::vector<uint64_t> counts(max_order);
for (std::size_t i = 0; i < max_order; ++i) {
merged_probs[i] >> util::stream::CountRecords(&counts[i]);
}
for (util::stream::Chains *i = input_chains.begin(); i != input_chains.end(); ++i) {
*i >> util::stream::kRecycle;
}
// Pass 2: normalize.
{
util::stream::Sorts<ContextOrder> sorts(merged_probs.size());
SinkSort(config.sort, merged_probs, sorts);
merged_probs.Wait(true);
for (util::stream::Chains *i = input_chains.begin(); i != input_chains.end(); ++i) {
i->Wait(true);
}
SourceSort(merged_probs, sorts);
}
std::cerr << "Normalizing" << std::endl;
SetupInputs(config.BufferSize(), *vocab, models, true, input_chains, models_by_order);
util::stream::Chains probabilities(max_order), backoffs(max_order - 1);
std::size_t block_count = 2;
for (std::size_t i = 0; i < max_order; ++i) {
// Careful accounting to ensure RewindableStream can fit the entire vocabulary.
block_count = std::max<std::size_t>(block_count, 2);
// This much needs to fit in RewindableStream.
std::size_t fit = NGram<float>::TotalSize(i + 1) * counts[0];
// fit / (block_count - 1) rounded up
std::size_t min_block = (fit + block_count - 2) / (block_count - 1);
std::size_t specify = std::max(config.BufferSize(), min_block * block_count);
probabilities.push_back(util::stream::ChainConfig(NGram<float>::TotalSize(i + 1), block_count, specify));
}
for (std::size_t i = 0; i < max_order - 1; ++i) {
backoffs.push_back(util::stream::ChainConfig(sizeof(float), 2, config.BufferSize()));
}
Normalize(info, models_by_order, merged_probs, probabilities, backoffs);
util::FixedArray<util::stream::FileBuffer> backoff_buffers(backoffs.size());
for (std::size_t i = 0; i < max_order - 1; ++i) {
backoff_buffers.push_back(util::MakeTemp(config.sort.temp_prefix));
backoffs[i] >> backoff_buffers.back().Sink() >> util::stream::kRecycle;
}
for (util::stream::Chains *i = input_chains.begin(); i != input_chains.end(); ++i) {
*i >> util::stream::kRecycle;
}
merged_probs >> util::stream::kRecycle;
// Pass 3: backoffs in the right place.
{
util::stream::Sorts<SuffixOrder> sorts(probabilities.size());
SinkSort(config.sort, probabilities, sorts);
probabilities.Wait(true);
for (util::stream::Chains *i = input_chains.begin(); i != input_chains.end(); ++i) {
i->Wait(true);
}
backoffs.Wait(true);
merged_probs.Wait(true);
// destroy universal vocab to save RAM.
vocab.reset();
SourceSort(probabilities, sorts);
}
std::cerr << "Reunifying backoffs" << std::endl;
util::stream::ChainPositions prob_pos(max_order - 1);
util::stream::Chains combined(max_order - 1);
for (std::size_t i = 0; i < max_order - 1; ++i) {
if (i == max_order - 2)
backoffs[i].ActivateProgress();
backoffs[i].SetProgressTarget(backoff_buffers[i].Size());
backoffs[i] >> backoff_buffers[i].Source(true);
prob_pos.push_back(probabilities[i].Add());
combined.push_back(util::stream::ChainConfig(NGram<ProbBackoff>::TotalSize(i + 1), 2, config.BufferSize()));
}
util::stream::ChainPositions backoff_pos(backoffs);
ReunifyBackoff(prob_pos, backoff_pos, combined);
util::stream::ChainPositions output_pos(max_order);
for (std::size_t i = 0; i < max_order - 1; ++i) {
output_pos.push_back(combined[i].Add());
}
output_pos.push_back(probabilities.back().Add());
probabilities >> util::stream::kRecycle;
backoffs >> util::stream::kRecycle;
combined >> util::stream::kRecycle;
// TODO genericize to ModelBuffer etc.
PrintARPA(vocab_null.get(), write_file, counts).Run(output_pos);
}
}} // namespaces