The dataset configs are located within tools/cfgs/det_dataset_configs, and the model configs are located within tools/cfgs/det_model_configs for different datasets.
- Test with a pretrained model:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --ckpt ${CKPT}
- To test all the saved checkpoints of a specific training setting and draw the performance curve on the Tensorboard, add the
--eval_all
argument:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --eval_all
- To test with multiple GPUs:
sh scripts/dist_test.sh ${NUM_GPUS} \
--cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE}
# or
sh scripts/slurm_test_mgpu.sh ${PARTITION} ${NUM_GPUS} \
--cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE}
You could optionally add extra command line parameters --batch_size ${BATCH_SIZE}
and --epochs ${EPOCHS}
to specify your preferred parameters.
- KITTI
sh scripts/dist_train.sh ${NUM_GPUS} --cfg_file ${CONFIG_FILE}
# or
sh scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} ${NUM_GPUS} --cfg_file ${CONFIG_FILE}
- Waymo (Two stage training schame)
#LiDAR branch
sh scripts/dist_train.sh ${NGPUSLIST} ${NUM_GPUS} --cfg_file ${CONFIG_FILE}
#LoGoNet branch
sh scripts/dist_train_mm.sh ${NGPUSLIST} ${NUM_GPUS} --cfg_file ${CONFIG_FILE} --pretrained_model ${PRETRAINED_MODEL_PATH}
# or
#LiDAR branch
sh scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} ${NUM_GPUS} --cfg_file ${CONFIG_FILE}
#LoGoNet branch
sh scripts/slurm_train_mm.sh ${PARTITION} ${JOB_NAME} ${NUM_GPUS} --cfg_file ${CONFIG_FILE} --pretrained_model ${PRETRAINED_MODEL_PATH}