Skip to content

Latest commit

 

History

History
569 lines (414 loc) · 17.4 KB

INSTALL.md

File metadata and controls

569 lines (414 loc) · 17.4 KB

01、安装MYSQL

、下载并安装mysql:

wget -i -c http://dev.mysql.com/get/mysql57-community-release-el7-10.noarch.rpm
yum -y install mysql57-community-release-el7-10.noarch.rpm
yum -y install mysql-community-server --nogpgcheck

、启动并查看状态MySQL:

systemctl start  mysqld.service
systemctl status mysqld.service

、查看MySQL的默认密码:

grep "password" /var/log/mysqld.log

img

、登录进MySQL

mysql -uroot -p

、修改默认密码(设置密码需要有大小写符号组合—安全性),把下面的my passrod替换成自己的密码

ALTER USER 'root'@'localhost' IDENTIFIED BY 'my password';

、开启远程访问 (把下面的my passrod替换成自己的密码)

grant all privileges on *.* to 'root'@'%' identified by 'my password' with grant option;

flush privileges;

exit

、在云服务上增加MySQL的端口

02、安装DOCKER和DOCKER-COMPOSE

首先我们需要安装GCC相关的环境:

yum -y install gcc

yum -y install gcc-c++

安装Docker需要的依赖软件包:

yum install -y yum-utils device-mapper-persistent-data lvm2

设置国内的镜像(提高速度)

yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo

更新yum软件包索引:

yum makecache fast

安装DOCKER CE(注意:Docker分为CE版和EE版,一般我们用CE版就够用了.)

yum -y install docker-ce

启动Docker:

systemctl start docker

下载回来的Docker版本::

docker version

运行以下命令以下载 Docker Compose 的当前稳定版本:

sudo curl -L "https://github.com/docker/compose/releases/download/1.24.1/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

将可执行权限应用于二进制文件:

sudo chmod +x /usr/local/bin/docker-compose

创建软链:

sudo ln -s /usr/local/bin/docker-compose /usr/bin/docker-compose

测试是否安装成功:

docker-compose --version

(Austin项目的中间件使用docker进行部署,文件内容可以参考项目中docker文件夹)

03、安装KAFKA

新建搭建kafka环境的docker-compose.yml文件,内容如下:

version: '3'
services:
  zookepper:
    image: wurstmeister/zookeeper                    # 原镜像`wurstmeister/zookeeper`
    container_name: zookeeper                        # 容器名为'zookeeper'
    volumes:                                         # 数据卷挂载路径设置,将本机目录映射到容器目录
      - "/etc/localtime:/etc/localtime"
    ports:                                           # 映射端口
      - "2181:2181"

  kafka:
    image: wurstmeister/kafka                                # 原镜像`wurstmeister/kafka`
    container_name: kafka                                    # 容器名为'kafka'
    volumes:                                                 # 数据卷挂载路径设置,将本机目录映射到容器目录
      - "/etc/localtime:/etc/localtime"
    environment:                                                       # 设置环境变量,相当于docker run命令中的-e
      KAFKA_BROKER_ID: 0                                               # 在kafka集群中,每个kafka都有一个BROKER_ID来区分自己
      KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://ip:9092 # TODO 将kafka的地址端口注册给zookeeper
      KAFKA_LISTENERS: PLAINTEXT://0.0.0.0:9092                        # 配置kafka的监听端口
      KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181                
      KAFKA_CREATE_TOPICS: "hello_world"
      KAFKA_HEAP_OPTS: -Xmx1G -Xms256M
    ports:                              # 映射端口
      - "9092:9092"
    depends_on:                         # 解决容器依赖启动先后问题
      - zookepper

  kafka-manager:
    image: sheepkiller/kafka-manager                         # 原镜像`sheepkiller/kafka-manager`
    container_name: kafka-manager                            # 容器名为'kafka-manager'
    environment:                        # 设置环境变量,相当于docker run命令中的-e
      ZK_HOSTS: zookeeper:2181 
      APPLICATION_SECRET: xxxxx
      KAFKA_MANAGER_AUTH_ENABLED: "true"  # 开启kafka-manager权限校验
      KAFKA_MANAGER_USERNAME: admin       # 登陆账户
      KAFKA_MANAGER_PASSWORD: 123456      # 登陆密码
    ports:                              # 映射端口
      - "9000:9000"
    depends_on:                         # 解决容器依赖启动先后问题
      - kafka

文件内 // TODO 中的ip需要改成自己的,并且如果你用的是云服务器,那需要把端口给打开。

在存放docker-compose.yml的目录下执行启动命令:

docker-compose up -d

可以查看下docker镜像运行的情况:

docker ps 

进入kafka 的容器:

docker exec -it kafka sh

创建两个topic(这里我的topicName就叫austinBusiness和austinLog,你们可以改成自己的)


$KAFKA_HOME/bin/kafka-topics.sh --create --topic austinBusiness --partitions 1 --zookeeper zookeeper:2181 --replication-factor 1

$KAFKA_HOME/bin/kafka-topics.sh --create --topic austinLog --partitions 1 --zookeeper zookeeper:2181 --replication-factor 1

$KAFKA_HOME/bin/kafka-topics.sh --create --topic austinRecall --partitions 1 --zookeeper zookeeper:2181 --replication-factor 1
 

查看刚创建的topic信息:

$KAFKA_HOME/bin/kafka-topics.sh --zookeeper zookeeper:2181 --describe --topic austinBusiness

04、安装REDIS

首先,我们新建一个文件夹redis,然后在该目录下创建出data文件夹、redis.conf文件和docker-compose.yaml文件

redis.conf文件的内容如下(后面的配置可在这更改,比如requirepass 我指定的密码为austin)

protected-mode no
port 6379
timeout 0
save 900 1 
save 300 10
save 60 10000
rdbcompression yes
dbfilename dump.rdb
dir /data
appendonly yes
appendfsync everysec
requirepass austin

docker-compose.yaml的文件内容如下:

version: '3'
services:
  redis:
    image: redis:latest
    container_name: redis
    restart: always
    ports:
      - 6379:6379
    volumes:
      - ./redis.conf:/usr/local/etc/redis/redis.conf:rw
      - ./data:/data:rw
    command:
      /bin/bash -c "redis-server /usr/local/etc/redis/redis.conf "

配置的工作就完了,如果是云服务器,记得开redis端口6379

启动Redis跟之前安装Kafka的时候就差不多啦

docker-compose up -d

docker ps

docker exec -it redis redis-cli

auth austin

05、安装APOLLO

部署Apollo跟之前一样直接用docker-compose就完事了,在GitHub已经给出了对应的教程和docker-compose.yml以及相关的文件,直接复制粘贴就完事咯。

PS: Apollo 的docker配置文件可以参考:docker/apollo/文件夹, 简单来说,在 docker/apollo/docker-quick-start/文件夹下执行docker-compose up -d 执行即可.

目录结构最好保持一致:

注:我的配置里更改过端口,所以我的程序AustinApplication写的端口为7000

https://www.apolloconfig.com/#/zh/deployment/quick-start-docker

https://github.com/apolloconfig/apollo/tree/master/scripts/docker-quick-start

部门的创建其实也是一份"配置",输入organizations就能把现有的部门给改掉,我新增了boss股东部门,大家都是我的股东。

PS:我的namespace是boss.austin

apollo配置样例可看example/apollo.properties文件的内容

dynamic-tp-apollo-dtp它是一个apollo的namespace,存放着动态线程池的配置

动态线程池样例配置可看 dynamic-tp-apollo-dtp.yml 文件的内容

06、安装PROMETHEUS和GRAFANA(可选)

存放docker-compose.yml的信息:

version: '2'

networks:
    monitor:
        driver: bridge

services:
    prometheus:
        image: prom/prometheus
        container_name: prometheus
        hostname: prometheus
        restart: always
        volumes:
            - ./prometheus.yml:/etc/prometheus/prometheus.yml
        ports:
            - "9090:9090"
        networks:
            - monitor

    alertmanager:
        image: prom/alertmanager
        container_name: alertmanager
        hostname: alertmanager
        restart: always
        ports:
            - "9093:9093"
        networks:
            - monitor

    grafana:
        image: grafana/grafana
        container_name: grafana
        hostname: grafana
        restart: always
        ports:
            - "3000:3000"
        networks:
            - monitor

    node-exporter:
        image: quay.io/prometheus/node-exporter
        container_name: node-exporter
        hostname: node-exporter
        restart: always
        ports:
            - "9100:9100"
        networks:
            - monitor

    cadvisor:
        image: google/cadvisor:latest
        container_name: cadvisor
        hostname: cadvisor
        restart: always
        volumes:
            - /:/rootfs:ro
            - /var/run:/var/run:rw
            - /sys:/sys:ro
            - /var/lib/docker/:/var/lib/docker:ro
        ports:
            - "8899:8080"
        networks:
            - monitor

新建prometheus的配置文件prometheus.yml

global:
  scrape_interval:     15s
  evaluation_interval: 15s
scrape_configs:
  - job_name: 'prometheus'
    static_configs:
    - targets: ['ip:9090']  
  - job_name: 'cadvisor'
    static_configs:
    - targets: ['ip:8899']  
  - job_name: 'node'
    static_configs:
    - targets: ['ip:9100']  

这里要注意端口,按自己配置的来,ip也要填写为自己的

把这份prometheus.yml的配置往/etc/prometheus/prometheus.yml 路径下复制一份。随后在目录下docker-compose up -d启动,于是我们就可以分别访问:

  • http://ip:9100/metrics( 查看服务器的指标)
  • http://ip:8899/metrics(查看docker容器的指标)
  • http://ip:9090/(prometheus的原生web-ui)
  • http://ip:3000/(Grafana开源的监控可视化组件页面)

进到Grafana首页,配置prometheus作为数据源

进到配置页面,写下对应的URL,然后保存就好了。

相关监控的模板可以在 https://grafana.com/grafana/dashboards/ 这里查到。

服务器的监控直接选用8919的就好了

import后就能直接看到高大上的监控页面了:

使用模板893来配置监控docker的信息:

选用了4701模板的JVM监控和12900SpringBoot监控(程序代码已经接入了actuator和prometheus)。需要在prometheus.yml配置下新增暴露的服务地址:

  - job_name: 'austin'
    metrics_path: '/actuator/prometheus' # 采集的路径
    static_configs:
    - targets: ['ip:port'] # todo 这里的ip和端口写自己的应用下的

07、安装GRAYLOG(可选)-分布式日志收集框架

docker-compose.yml文件内容:

version: '3'
services:
    mongo:
      image: mongo:4.2
      networks:
        - graylog
    elasticsearch:
      image: docker.elastic.co/elasticsearch/elasticsearch-oss:7.10.2
      environment:
        - http.host=0.0.0.0
        - transport.host=localhost
        - network.host=0.0.0.0
        - "ES_JAVA_OPTS=-Dlog4j2.formatMsgNoLookups=true -Xms512m -Xmx512m"
        - GRAYLOG_ROOT_TIMEZONE=Asia/Shanghai
      ulimits:
        memlock:
          soft: -1
          hard: -1
      deploy:
        resources:
          limits:
            memory: 1g
      networks:
        - graylog
    graylog:
      image: graylog/graylog:4.2
      environment:
        - GRAYLOG_PASSWORD_SECRET=somepasswordpepper
        - GRAYLOG_ROOT_PASSWORD_SHA2=8c6976e5b5410415bde908bd4dee15dfb167a9c873fc4bb8a81f6f2ab448a918
        - GRAYLOG_HTTP_EXTERNAL_URI=http://ip:9009/ # 这里注意要改ip
        - GRAYLOG_ROOT_TIMEZONE=Asia/Shanghai
      entrypoint: /usr/bin/tini -- wait-for-it elasticsearch:9200 --  /docker-entrypoint.sh
      networks:
        - graylog
      restart: always
      depends_on:
        - mongo
        - elasticsearch
      ports:
        - 9009:9000
        - 1514:1514
        - 1514:1514/udp
        - 12201:12201
        - 12201:12201/udp
networks:
    graylog:
      driver: bridge

这个文件里唯一需要改动的就是ip(本来的端口是9000的,我由于已经占用了9000端口了,所以我这里把端口改成了9009,你们可以随意)

启动以后,我们就可以通过ip:port访问对应的Graylog后台地址了,默认的账号和密码是admin/admin

配置下inputs的配置,找到GELF UDP,然后点击Launch new input,只需要填写Title字段,保存就完事了(其他不用动)。

最后配置austin.grayLogIp的ip即可实现分布式日志收集

08、XXL-JOB

文档:https://www.xuxueli.com/xxl-job/#2.1%20%E5%88%9D%E5%A7%8B%E5%8C%96%E2%80%9C%E8%B0%83%E5%BA%A6%E6%95%B0%E6%8D%AE%E5%BA%93%E2%80%9D

xxl-job的部署我这边其实是依赖官网的文档的,步骤可以简单总结为:

1、把xxl-job的仓库拉下来

2、执行/xxl-job/doc/db/tables_xxl_job.sql的脚本(创建对应的库、创建表以及插入测试数据记录)

3、如果是本地启动「调度中心」则在xxl-job-adminapplication.properties更改相应的数据库配置,改完启动即可

4、如果是云服务启动「调度中心」,则可以选择拉取docker镜像进行部署,我拉取的是2.30版本,随后执行以下命令即可:

docker pull xuxueli/xxl-job-admin:2.3.0

docker run -e PARAMS="--spring.datasource.url=jdbc:mysql://ip:3306/xxl_job?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&useSSL=false&zeroDateTimeBehavior=convertToNull --spring.datasource.username=root --spring.datasource.password=password " -p 6767:8080 --name xxl-job-admin  -d xuxueli/xxl-job-admin:2.3.0

注意:第二条命令的ippassword需要更改为自己的,并且,我开的是6767端口

09、Flink

部署Flink也是直接上docker-compose就完事了,值得注意的是:我们在部署的时候需要在配置文件里指定时区

docker-compose.yml配置内容如下:

version: "2.2"
services:
  jobmanager:
    image: flink:latest
    ports:
      - "8081:8081"
    command: jobmanager
    environment:
      - |
        FLINK_PROPERTIES=
        jobmanager.rpc.address: jobmanager
      - SET_CONTAINER_TIMEZONE=true
      - CONTAINER_TIMEZONE=Asia/Shanghai
      - TZ=Asia/Shanghai
  taskmanager:
    image: flink:latest
    depends_on:
      - jobmanager
    command: taskmanager
    scale: 1
    environment:
      - |
        FLINK_PROPERTIES=
        jobmanager.rpc.address: jobmanager
        taskmanager.numberOfTaskSlots: 2
      - SET_CONTAINER_TIMEZONE=true
      - CONTAINER_TIMEZONE=Asia/Shanghai
      - TZ=Asia/Shanghai

10、未完待续

安装更详细的过程以及整个文章系列的更新思路都在公众号Java3y连载哟!

如果你需要用这个项目写在简历上,强烈建议关注公众号看实现细节的思路。如果⽂档中有任何的不懂的问题,都可以直接来找我询问,我乐意帮助你们!公众号下有我的联系方式