以下代码分析基于
kubernetes v1.12.0
版本。
本文主要分析调度中的抢占逻辑,当pod不适合任何节点的时候,可能pod会调度失败,这时候可能会发生抢占。抢占逻辑的具体实现函数为Scheduler.preempt
。
当pod不适合任何节点的时候,可能pod会调度失败。这时候可能会发生抢占。
scheduleOne
函数中关于抢占调用的逻辑如下:
此部分的代码位于/pkg/scheduler/scheduler.go
// scheduleOne does the entire scheduling workflow for a single pod. It is serialized on the scheduling algorithm's host fitting.
func (sched *Scheduler) scheduleOne() {
...
suggestedHost, err := sched.schedule(pod)
if err != nil {
// schedule() may have failed because the pod would not fit on any host, so we try to
// preempt, with the expectation that the next time the pod is tried for scheduling it
// will fit due to the preemption. It is also possible that a different pod will schedule
// into the resources that were preempted, but this is harmless.
if fitError, ok := err.(*core.FitError); ok {
preemptionStartTime := time.Now()
// 执行抢占逻辑
sched.preempt(pod, fitError)
metrics.PreemptionAttempts.Inc()
metrics.SchedulingAlgorithmPremptionEvaluationDuration.Observe(metrics.SinceInMicroseconds(preemptionStartTime))
metrics.SchedulingLatency.WithLabelValues(metrics.PreemptionEvaluation).Observe(metrics.SinceInSeconds(preemptionStartTime))
}
return
}
...
}
其中核心代码为:
// 基于sched.schedule(pod)返回的err和当前待调度的pod执行抢占策略
sched.preempt(pod, fitError)
当pod调度失败的时候,会抢占低优先级pod的空间来给高优先级的pod。其中入参为调度失败的pod对象和调度失败的err。
抢占的基本流程如下:
- 判断是否有关闭抢占机制,如果关闭抢占机制则直接返回。
- 获取调度失败pod的最新对象数据。
- 执行抢占算法
Algorithm.Preempt
,返回预调度节点和需要被剔除的pod列表。 - 将抢占算法返回的node添加到pod的
Status.NominatedNodeName
中,并删除需要被剔除的pod。 - 当抢占算法返回的node是nil的时候,清除pod的
Status.NominatedNodeName
信息。
整个抢占流程的最终结果实际上是更新Pod.Status.NominatedNodeName
属性的信息。如果抢占算法返回的节点不为空,则将该node更新到Pod.Status.NominatedNodeName
中,否则就将Pod.Status.NominatedNodeName
设置为空。
preempt的具体实现函数:
此部分的代码位于/pkg/scheduler/scheduler.go
// preempt tries to create room for a pod that has failed to schedule, by preempting lower priority pods if possible.
// If it succeeds, it adds the name of the node where preemption has happened to the pod annotations.
// It returns the node name and an error if any.
func (sched *Scheduler) preempt(preemptor *v1.Pod, scheduleErr error) (string, error) {
if !util.PodPriorityEnabled() || sched.config.DisablePreemption {
glog.V(3).Infof("Pod priority feature is not enabled or preemption is disabled by scheduler configuration." +
" No preemption is performed.")
return "", nil
}
preemptor, err := sched.config.PodPreemptor.GetUpdatedPod(preemptor)
if err != nil {
glog.Errorf("Error getting the updated preemptor pod object: %v", err)
return "", err
}
node, victims, nominatedPodsToClear, err := sched.config.Algorithm.Preempt(preemptor, sched.config.NodeLister, scheduleErr)
metrics.PreemptionVictims.Set(float64(len(victims)))
if err != nil {
glog.Errorf("Error preempting victims to make room for %v/%v.", preemptor.Namespace, preemptor.Name)
return "", err
}
var nodeName = ""
if node != nil {
nodeName = node.Name
err = sched.config.PodPreemptor.SetNominatedNodeName(preemptor, nodeName)
if err != nil {
glog.Errorf("Error in preemption process. Cannot update pod %v/%v annotations: %v", preemptor.Namespace, preemptor.Name, err)
return "", err
}
for _, victim := range victims {
if err := sched.config.PodPreemptor.DeletePod(victim); err != nil {
glog.Errorf("Error preempting pod %v/%v: %v", victim.Namespace, victim.Name, err)
return "", err
}
sched.config.Recorder.Eventf(victim, v1.EventTypeNormal, "Preempted", "by %v/%v on node %v", preemptor.Namespace, preemptor.Name, nodeName)
}
}
// Clearing nominated pods should happen outside of "if node != nil". Node could
// be nil when a pod with nominated node name is eligible to preempt again,
// but preemption logic does not find any node for it. In that case Preempt()
// function of generic_scheduler.go returns the pod itself for removal of the annotation.
for _, p := range nominatedPodsToClear {
rErr := sched.config.PodPreemptor.RemoveNominatedNodeName(p)
if rErr != nil {
glog.Errorf("Cannot remove nominated node annotation of pod: %v", rErr)
// We do not return as this error is not critical.
}
}
return nodeName, err
}
以下对preempt
的实现分段分析。
如果设置关闭抢占机制,则直接返回。
if !util.PodPriorityEnabled() || sched.config.DisablePreemption {
glog.V(3).Infof("Pod priority feature is not enabled or preemption is disabled by scheduler configuration." +
" No preemption is performed.")
return "", nil
}
获取当前pod的最新状态。
preemptor, err := sched.config.PodPreemptor.GetUpdatedPod(preemptor)
if err != nil {
glog.Errorf("Error getting the updated preemptor pod object: %v", err)
return "", err
}
GetUpdatedPod
的实现就是去拿pod的对象。
func (p *podPreemptor) GetUpdatedPod(pod *v1.Pod) (*v1.Pod, error) {
return p.Client.CoreV1().Pods(pod.Namespace).Get(pod.Name, metav1.GetOptions{})
}
接着执行抢占的算法。抢占的算法返回预调度节点的信息和因抢占被剔除的pod的信息。具体的抢占算法逻辑下文分析。
node, victims, nominatedPodsToClear, err := sched.config.Algorithm.Preempt(preemptor, sched.config.NodeLister, scheduleErr)
将预调度节点的信息更新到pod的Status.NominatedNodeName
属性中。
err = sched.config.PodPreemptor.SetNominatedNodeName(preemptor, nodeName)
SetNominatedNodeName
的具体实现为:
func (p *podPreemptor) SetNominatedNodeName(pod *v1.Pod, nominatedNodeName string) error {
podCopy := pod.DeepCopy()
podCopy.Status.NominatedNodeName = nominatedNodeName
_, err := p.Client.CoreV1().Pods(pod.Namespace).UpdateStatus(podCopy)
return err
}
接着删除因抢占而需要被剔除的pod。
err := sched.config.PodPreemptor.DeletePod(victim)
PodPreemptor.DeletePod
的具体实现就是删除具体的pod。
func (p *podPreemptor) DeletePod(pod *v1.Pod) error {
return p.Client.CoreV1().Pods(pod.Namespace).Delete(pod.Name, &metav1.DeleteOptions{})
}
如果抢占算法得出的node对象为nil,则将pod的Status.NominatedNodeName
属性设置为空。
// Clearing nominated pods should happen outside of "if node != nil". Node could
// be nil when a pod with nominated node name is eligible to preempt again,
// but preemption logic does not find any node for it. In that case Preempt()
// function of generic_scheduler.go returns the pod itself for removal of the annotation.
for _, p := range nominatedPodsToClear {
rErr := sched.config.PodPreemptor.RemoveNominatedNodeName(p)
if rErr != nil {
glog.Errorf("Cannot remove nominated node annotation of pod: %v", rErr)
// We do not return as this error is not critical.
}
}
RemoveNominatedNodeName
的具体实现如下:
func (p *podPreemptor) RemoveNominatedNodeName(pod *v1.Pod) error {
if len(pod.Status.NominatedNodeName) == 0 {
return nil
}
return p.SetNominatedNodeName(pod, "")
}
Pod.Status.NominatedNodeName
的说明:
nominatedNodeName
是调度失败的pod抢占别的pod的时候,被抢占pod的运行节点。但在剔除被抢占pod之前该调度失败的pod不会被调度。同时也不保证最终该pod一定会调度到nominatedNodeName
的机器上,也可能因为之后资源充足等原因调度到其他节点上。最终该pod会被加到调度的队列中。
其中加入到调度队列的具体过程如下:
func NewConfigFactory(args *ConfigFactoryArgs) scheduler.Configurator {
...
// unscheduled pod queue
args.PodInformer.Informer().AddEventHandler(
...
Handler: cache.ResourceEventHandlerFuncs{
AddFunc: c.addPodToSchedulingQueue,
UpdateFunc: c.updatePodInSchedulingQueue,
DeleteFunc: c.deletePodFromSchedulingQueue,
},
},
)
...
}
addPodToSchedulingQueue:
func (c *configFactory) addPodToSchedulingQueue(obj interface{}) {
if err := c.podQueue.Add(obj.(*v1.Pod)); err != nil {
runtime.HandleError(fmt.Errorf("unable to queue %T: %v", obj, err))
}
}
PriorityQueue.Add:
// Add adds a pod to the active queue. It should be called only when a new pod
// is added so there is no chance the pod is already in either queue.
func (p *PriorityQueue) Add(pod *v1.Pod) error {
p.lock.Lock()
defer p.lock.Unlock()
err := p.activeQ.Add(pod)
if err != nil {
glog.Errorf("Error adding pod %v/%v to the scheduling queue: %v", pod.Namespace, pod.Name, err)
} else {
if p.unschedulableQ.get(pod) != nil {
glog.Errorf("Error: pod %v/%v is already in the unschedulable queue.", pod.Namespace, pod.Name)
p.deleteNominatedPodIfExists(pod)
p.unschedulableQ.delete(pod)
}
p.addNominatedPodIfNeeded(pod)
p.cond.Broadcast()
}
return err
}
addNominatedPodIfNeeded:
// addNominatedPodIfNeeded adds a pod to nominatedPods if it has a NominatedNodeName and it does not
// already exist in the map. Adding an existing pod is not going to update the pod.
func (p *PriorityQueue) addNominatedPodIfNeeded(pod *v1.Pod) {
nnn := NominatedNodeName(pod)
if len(nnn) > 0 {
for _, np := range p.nominatedPods[nnn] {
if np.UID == pod.UID {
glog.Errorf("Pod %v/%v already exists in the nominated map!", pod.Namespace, pod.Name)
return
}
}
p.nominatedPods[nnn] = append(p.nominatedPods[nnn], pod)
}
}
NominatedNodeName:
// NominatedNodeName returns nominated node name of a Pod.
func NominatedNodeName(pod *v1.Pod) string {
return pod.Status.NominatedNodeName
}
抢占算法依然是在ScheduleAlgorithm
接口中定义。
// ScheduleAlgorithm is an interface implemented by things that know how to schedule pods
// onto machines.
type ScheduleAlgorithm interface {
Schedule(*v1.Pod, NodeLister) (selectedMachine string, err error)
// Preempt receives scheduling errors for a pod and tries to create room for
// the pod by preempting lower priority pods if possible.
// It returns the node where preemption happened, a list of preempted pods, a
// list of pods whose nominated node name should be removed, and error if any.
Preempt(*v1.Pod, NodeLister, error) (selectedNode *v1.Node, preemptedPods []*v1.Pod, cleanupNominatedPods []*v1.Pod, err error)
// Predicates() returns a pointer to a map of predicate functions. This is
// exposed for testing.
Predicates() map[string]FitPredicate
// Prioritizers returns a slice of priority config. This is exposed for
// testing.
Prioritizers() []PriorityConfig
}
Preempt
的具体实现为genericScheduler
结构体。
Preempt
的主要实现是找到可以调度的节点和上面因抢占而需要被剔除的pod。
基本流程如下:
- 根据调度失败的原因对所有节点先进行一批筛选,筛选出潜在的被调度节点列表。
- 通过
selectNodesForPreemption
筛选出需要牺牲的pod和其节点。 - 基于拓展抢占逻辑再次对上述筛选出来的牺牲者做过滤。
- 基于上述的过滤结果,选择一个最终可能因抢占被调度的节点。
- 基于上述的候选节点,找出该节点上优先级低于当前被调度pod的牺牲者pod列表。
完整代码如下:
此部分代码位于pkg/scheduler/core/generic_scheduler.go
// preempt finds nodes with pods that can be preempted to make room for "pod" to
// schedule. It chooses one of the nodes and preempts the pods on the node and
// returns 1) the node, 2) the list of preempted pods if such a node is found,
// 3) A list of pods whose nominated node name should be cleared, and 4) any
// possible error.
func (g *genericScheduler) Preempt(pod *v1.Pod, nodeLister algorithm.NodeLister, scheduleErr error) (*v1.Node, []*v1.Pod, []*v1.Pod, error) {
// Scheduler may return various types of errors. Consider preemption only if
// the error is of type FitError.
fitError, ok := scheduleErr.(*FitError)
if !ok || fitError == nil {
return nil, nil, nil, nil
}
err := g.cache.UpdateNodeNameToInfoMap(g.cachedNodeInfoMap)
if err != nil {
return nil, nil, nil, err
}
if !podEligibleToPreemptOthers(pod, g.cachedNodeInfoMap) {
glog.V(5).Infof("Pod %v/%v is not eligible for more preemption.", pod.Namespace, pod.Name)
return nil, nil, nil, nil
}
allNodes, err := nodeLister.List()
if err != nil {
return nil, nil, nil, err
}
if len(allNodes) == 0 {
return nil, nil, nil, ErrNoNodesAvailable
}
potentialNodes := nodesWherePreemptionMightHelp(allNodes, fitError.FailedPredicates)
if len(potentialNodes) == 0 {
glog.V(3).Infof("Preemption will not help schedule pod %v/%v on any node.", pod.Namespace, pod.Name)
// In this case, we should clean-up any existing nominated node name of the pod.
return nil, nil, []*v1.Pod{pod}, nil
}
pdbs, err := g.cache.ListPDBs(labels.Everything())
if err != nil {
return nil, nil, nil, err
}
// 找出可能被抢占的节点
nodeToVictims, err := selectNodesForPreemption(pod, g.cachedNodeInfoMap, potentialNodes, g.predicates,
g.predicateMetaProducer, g.schedulingQueue, pdbs)
if err != nil {
return nil, nil, nil, err
}
// We will only check nodeToVictims with extenders that support preemption.
// Extenders which do not support preemption may later prevent preemptor from being scheduled on the nominated
// node. In that case, scheduler will find a different host for the preemptor in subsequent scheduling cycles.
nodeToVictims, err = g.processPreemptionWithExtenders(pod, nodeToVictims)
if err != nil {
return nil, nil, nil, err
}
// 选出最终被抢占的节点
candidateNode := pickOneNodeForPreemption(nodeToVictims)
if candidateNode == nil {
return nil, nil, nil, err
}
// Lower priority pods nominated to run on this node, may no longer fit on
// this node. So, we should remove their nomination. Removing their
// nomination updates these pods and moves them to the active queue. It
// lets scheduler find another place for them.
// 找出被强占节点上牺牲者pod列表
nominatedPods := g.getLowerPriorityNominatedPods(pod, candidateNode.Name)
if nodeInfo, ok := g.cachedNodeInfoMap[candidateNode.Name]; ok {
return nodeInfo.Node(), nodeToVictims[candidateNode].Pods, nominatedPods, err
}
return nil, nil, nil, fmt.Errorf(
"preemption failed: the target node %s has been deleted from scheduler cache",
candidateNode.Name)
}
以下对genericScheduler.Preempt
分段进行分析。
selectNodesForPreemption
并行地所有节点中找可能被抢占的节点。
nodeToVictims, err := selectNodesForPreemption(pod, g.cachedNodeInfoMap, potentialNodes, g.predicates,g.predicateMetaProducer, g.schedulingQueue, pdbs)
selectNodesForPreemption
主要基于selectVictimsOnNode
构造一个checkNode的函数,然后并发执行该函数。
selectNodesForPreemption
具体实现如下:
// selectNodesForPreemption finds all the nodes with possible victims for
// preemption in parallel.
func selectNodesForPreemption(pod *v1.Pod,
nodeNameToInfo map[string]*schedulercache.NodeInfo,
potentialNodes []*v1.Node,
predicates map[string]algorithm.FitPredicate,
metadataProducer algorithm.PredicateMetadataProducer,
queue SchedulingQueue,
pdbs []*policy.PodDisruptionBudget,
) (map[*v1.Node]*schedulerapi.Victims, error) {
nodeToVictims := map[*v1.Node]*schedulerapi.Victims{}
var resultLock sync.Mutex
// We can use the same metadata producer for all nodes.
meta := metadataProducer(pod, nodeNameToInfo)
checkNode := func(i int) {
nodeName := potentialNodes[i].Name
var metaCopy algorithm.PredicateMetadata
if meta != nil {
metaCopy = meta.ShallowCopy()
}
pods, numPDBViolations, fits := selectVictimsOnNode(pod, metaCopy, nodeNameToInfo[nodeName], predicates, queue, pdbs)
if fits {
resultLock.Lock()
victims := schedulerapi.Victims{
Pods: pods,
NumPDBViolations: numPDBViolations,
}
nodeToVictims[potentialNodes[i]] = &victims
resultLock.Unlock()
}
}
workqueue.Parallelize(16, len(potentialNodes), checkNode)
return nodeToVictims, nil
}
selectVictimsOnNode
找到应该被抢占的给定节点上的最小pod集合,以便给调度失败的pod安排足够的空间。该函数最终返回的是一个pod的数组。当有更低优先级的pod可能被选择的时候,较高优先级的pod不会被选入该待剔除的pod集合。
基本流程如下:
- 先检查当该节点上所有低于预被调度pod优先级的pod移除后,该pod能否被调度到当前节点上。
- 如果上述检查可以,则将该节点的所有低优先级pod按照优先级来排序。
// selectVictimsOnNode finds minimum set of pods on the given node that should
// be preempted in order to make enough room for "pod" to be scheduled. The
// minimum set selected is subject to the constraint that a higher-priority pod
// is never preempted when a lower-priority pod could be (higher/lower relative
// to one another, not relative to the preemptor "pod").
// The algorithm first checks if the pod can be scheduled on the node when all the
// lower priority pods are gone. If so, it sorts all the lower priority pods by
// their priority and then puts them into two groups of those whose PodDisruptionBudget
// will be violated if preempted and other non-violating pods. Both groups are
// sorted by priority. It first tries to reprieve as many PDB violating pods as
// possible and then does them same for non-PDB-violating pods while checking
// that the "pod" can still fit on the node.
// NOTE: This function assumes that it is never called if "pod" cannot be scheduled
// due to pod affinity, node affinity, or node anti-affinity reasons. None of
// these predicates can be satisfied by removing more pods from the node.
func selectVictimsOnNode(
pod *v1.Pod,
meta algorithm.PredicateMetadata,
nodeInfo *schedulercache.NodeInfo,
fitPredicates map[string]algorithm.FitPredicate,
queue SchedulingQueue,
pdbs []*policy.PodDisruptionBudget,
) ([]*v1.Pod, int, bool) {
potentialVictims := util.SortableList{CompFunc: util.HigherPriorityPod}
nodeInfoCopy := nodeInfo.Clone()
removePod := func(rp *v1.Pod) {
nodeInfoCopy.RemovePod(rp)
if meta != nil {
meta.RemovePod(rp)
}
}
addPod := func(ap *v1.Pod) {
nodeInfoCopy.AddPod(ap)
if meta != nil {
meta.AddPod(ap, nodeInfoCopy)
}
}
// As the first step, remove all the lower priority pods from the node and
// check if the given pod can be scheduled.
podPriority := util.GetPodPriority(pod)
for _, p := range nodeInfoCopy.Pods() {
if util.GetPodPriority(p) < podPriority {
potentialVictims.Items = append(potentialVictims.Items, p)
removePod(p)
}
}
potentialVictims.Sort()
// If the new pod does not fit after removing all the lower priority pods,
// we are almost done and this node is not suitable for preemption. The only condition
// that we should check is if the "pod" is failing to schedule due to pod affinity
// failure.
// TODO(bsalamat): Consider checking affinity to lower priority pods if feasible with reasonable performance.
if fits, _, err := podFitsOnNode(pod, meta, nodeInfoCopy, fitPredicates, nil, nil, queue, false, nil); !fits {
if err != nil {
glog.Warningf("Encountered error while selecting victims on node %v: %v", nodeInfo.Node().Name, err)
}
return nil, 0, false
}
var victims []*v1.Pod
numViolatingVictim := 0
// Try to reprieve as many pods as possible. We first try to reprieve the PDB
// violating victims and then other non-violating ones. In both cases, we start
// from the highest priority victims.
violatingVictims, nonViolatingVictims := filterPodsWithPDBViolation(potentialVictims.Items, pdbs)
reprievePod := func(p *v1.Pod) bool {
addPod(p)
fits, _, _ := podFitsOnNode(pod, meta, nodeInfoCopy, fitPredicates, nil, nil, queue, false, nil)
if !fits {
removePod(p)
victims = append(victims, p)
glog.V(5).Infof("Pod %v is a potential preemption victim on node %v.", p.Name, nodeInfo.Node().Name)
}
return fits
}
for _, p := range violatingVictims {
if !reprievePod(p) {
numViolatingVictim++
}
}
// Now we try to reprieve non-violating victims.
for _, p := range nonViolatingVictims {
reprievePod(p)
}
return victims, numViolatingVictim, true
}
processPreemptionWithExtenders
基于selectNodesForPreemption
选出的牺牲者进行扩展的抢占逻辑继续筛选牺牲者。
// We will only check nodeToVictims with extenders that support preemption.
// Extenders which do not support preemption may later prevent preemptor from being scheduled on the nominated
// node. In that case, scheduler will find a different host for the preemptor in subsequent scheduling cycles.
nodeToVictims, err = g.processPreemptionWithExtenders(pod, nodeToVictims)
if err != nil {
return nil, nil, nil, err
}
processPreemptionWithExtenders
完整代码如下:
// processPreemptionWithExtenders processes preemption with extenders
func (g *genericScheduler) processPreemptionWithExtenders(
pod *v1.Pod,
nodeToVictims map[*v1.Node]*schedulerapi.Victims,
) (map[*v1.Node]*schedulerapi.Victims, error) {
if len(nodeToVictims) > 0 {
for _, extender := range g.extenders {
if extender.SupportsPreemption() && extender.IsInterested(pod) {
newNodeToVictims, err := extender.ProcessPreemption(
pod,
nodeToVictims,
g.cachedNodeInfoMap,
)
if err != nil {
if extender.IsIgnorable() {
glog.Warningf("Skipping extender %v as it returned error %v and has ignorable flag set",
extender, err)
continue
}
return nil, err
}
// Replace nodeToVictims with new result after preemption. So the
// rest of extenders can continue use it as parameter.
nodeToVictims = newNodeToVictims
// If node list becomes empty, no preemption can happen regardless of other extenders.
if len(nodeToVictims) == 0 {
break
}
}
}
}
return nodeToVictims, nil
}
pickOneNodeForPreemption
从筛选出的node中再挑选一个节点作为最终调度节点。
candidateNode := pickOneNodeForPreemption(nodeToVictims)
if candidateNode == nil {
return nil, nil, nil, err
}
pickOneNodeForPreemption
完整代码如下:
// pickOneNodeForPreemption chooses one node among the given nodes. It assumes
// pods in each map entry are ordered by decreasing priority.
// It picks a node based on the following criteria:
// 1. A node with minimum number of PDB violations.
// 2. A node with minimum highest priority victim is picked.
// 3. Ties are broken by sum of priorities of all victims.
// 4. If there are still ties, node with the minimum number of victims is picked.
// 5. If there are still ties, the first such node is picked (sort of randomly).
// The 'minNodes1' and 'minNodes2' are being reused here to save the memory
// allocation and garbage collection time.
func pickOneNodeForPreemption(nodesToVictims map[*v1.Node]*schedulerapi.Victims) *v1.Node {
if len(nodesToVictims) == 0 {
return nil
}
minNumPDBViolatingPods := math.MaxInt32
var minNodes1 []*v1.Node
lenNodes1 := 0
for node, victims := range nodesToVictims {
if len(victims.Pods) == 0 {
// We found a node that doesn't need any preemption. Return it!
// This should happen rarely when one or more pods are terminated between
// the time that scheduler tries to schedule the pod and the time that
// preemption logic tries to find nodes for preemption.
return node
}
numPDBViolatingPods := victims.NumPDBViolations
if numPDBViolatingPods < minNumPDBViolatingPods {
minNumPDBViolatingPods = numPDBViolatingPods
minNodes1 = nil
lenNodes1 = 0
}
if numPDBViolatingPods == minNumPDBViolatingPods {
minNodes1 = append(minNodes1, node)
lenNodes1++
}
}
if lenNodes1 == 1 {
return minNodes1[0]
}
// There are more than one node with minimum number PDB violating pods. Find
// the one with minimum highest priority victim.
minHighestPriority := int32(math.MaxInt32)
var minNodes2 = make([]*v1.Node, lenNodes1)
lenNodes2 := 0
for i := 0; i < lenNodes1; i++ {
node := minNodes1[i]
victims := nodesToVictims[node]
// highestPodPriority is the highest priority among the victims on this node.
highestPodPriority := util.GetPodPriority(victims.Pods[0])
if highestPodPriority < minHighestPriority {
minHighestPriority = highestPodPriority
lenNodes2 = 0
}
if highestPodPriority == minHighestPriority {
minNodes2[lenNodes2] = node
lenNodes2++
}
}
if lenNodes2 == 1 {
return minNodes2[0]
}
// There are a few nodes with minimum highest priority victim. Find the
// smallest sum of priorities.
minSumPriorities := int64(math.MaxInt64)
lenNodes1 = 0
for i := 0; i < lenNodes2; i++ {
var sumPriorities int64
node := minNodes2[i]
for _, pod := range nodesToVictims[node].Pods {
// We add MaxInt32+1 to all priorities to make all of them >= 0. This is
// needed so that a node with a few pods with negative priority is not
// picked over a node with a smaller number of pods with the same negative
// priority (and similar scenarios).
sumPriorities += int64(util.GetPodPriority(pod)) + int64(math.MaxInt32+1)
}
if sumPriorities < minSumPriorities {
minSumPriorities = sumPriorities
lenNodes1 = 0
}
if sumPriorities == minSumPriorities {
minNodes1[lenNodes1] = node
lenNodes1++
}
}
if lenNodes1 == 1 {
return minNodes1[0]
}
// There are a few nodes with minimum highest priority victim and sum of priorities.
// Find one with the minimum number of pods.
minNumPods := math.MaxInt32
lenNodes2 = 0
for i := 0; i < lenNodes1; i++ {
node := minNodes1[i]
numPods := len(nodesToVictims[node].Pods)
if numPods < minNumPods {
minNumPods = numPods
lenNodes2 = 0
}
if numPods == minNumPods {
minNodes2[lenNodes2] = node
lenNodes2++
}
}
// At this point, even if there are more than one node with the same score,
// return the first one.
if lenNodes2 > 0 {
return minNodes2[0]
}
glog.Errorf("Error in logic of node scoring for preemption. We should never reach here!")
return nil
}
getLowerPriorityNominatedPods
的基本流程如下:
- 获取候选节点上的pod列表。
- 获取待调度pod的优先级值。
- 遍历该节点的pod列表,如果低于待调度pod的优先级则放入低优先级pod列表中。
genericScheduler.Preempt中相关代码如下:
// Lower priority pods nominated to run on this node, may no longer fit on
// this node. So, we should remove their nomination. Removing their
// nomination updates these pods and moves them to the active queue. It
// lets scheduler find another place for them.
nominatedPods := g.getLowerPriorityNominatedPods(pod, candidateNode.Name)
if nodeInfo, ok := g.cachedNodeInfoMap[candidateNode.Name]; ok {
return nodeInfo.Node(), nodeToVictims[candidateNode].Pods, nominatedPods, err
}
getLowerPriorityNominatedPods
代码如下:
此部分代码位于pkg/scheduler/core/generic_scheduler.go
// getLowerPriorityNominatedPods returns pods whose priority is smaller than the
// priority of the given "pod" and are nominated to run on the given node.
// Note: We could possibly check if the nominated lower priority pods still fit
// and return those that no longer fit, but that would require lots of
// manipulation of NodeInfo and PredicateMeta per nominated pod. It may not be
// worth the complexity, especially because we generally expect to have a very
// small number of nominated pods per node.
func (g *genericScheduler) getLowerPriorityNominatedPods(pod *v1.Pod, nodeName string) []*v1.Pod {
pods := g.schedulingQueue.WaitingPodsForNode(nodeName)
if len(pods) == 0 {
return nil
}
var lowerPriorityPods []*v1.Pod
podPriority := util.GetPodPriority(pod)
for _, p := range pods {
if util.GetPodPriority(p) < podPriority {
lowerPriorityPods = append(lowerPriorityPods, p)
}
}
return lowerPriorityPods
}
当pod调度失败的时候,会抢占低优先级pod的空间来给高优先级的pod。其中入参为调度失败的pod对象和调度失败的err。
抢占的基本流程如下:
- 判断是否有关闭抢占机制,如果关闭抢占机制则直接返回。
- 获取调度失败pod的最新对象数据。
- 执行抢占算法
Algorithm.Preempt
,返回预调度节点和需要被剔除的pod列表。 - 将抢占算法返回的node添加到pod的
Status.NominatedNodeName
中,并删除需要被剔除的pod。 - 当抢占算法返回的node是nil的时候,清除pod的
Status.NominatedNodeName
信息。
整个抢占流程的最终结果实际上是更新Pod.Status.NominatedNodeName
属性的信息。如果抢占算法返回的节点不为空,则将该node更新到Pod.Status.NominatedNodeName
中,否则就将Pod.Status.NominatedNodeName
设置为空。
Preempt
的主要实现是找到可以调度的节点和上面因抢占而需要被剔除的pod。
基本流程如下:
- 根据调度失败的原因对所有节点先进行一批筛选,筛选出潜在的被调度节点列表。
- 通过
selectNodesForPreemption
筛选出需要牺牲的pod和其节点。 - 基于拓展抢占逻辑再次对上述筛选出来的牺牲者做过滤。
- 基于上述的过滤结果,选择一个最终可能因抢占被调度的节点。
- 基于上述的候选节点,找出该节点上优先级低于当前被调度pod的牺牲者pod列表。
参考: