-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcollate_fns.py
320 lines (261 loc) · 12.4 KB
/
collate_fns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import torch
from torch.nn.utils.rnn import pad_sequence
class DialogCollate:
'''
Masks prompt tokens in the target tensor, so they do not contribute to the loss.
collate_fn in dataloader is used for post processing on a single batch,
unlike __getitem__ in dataset class which returns a single example.
'''
def __init__(
self,
tokenizer,
max_len = 512,
_targets_ignore_index = -100,
_pad_token_id = 0
):
self.tokenizer = tokenizer
self.max_len = max_len # long sequences will be truncated to this length
self._targets_ignore_index = _targets_ignore_index
self._pad_token_id = _pad_token_id
def _construct_input_ids(self, example):
'''
:param example: a dict consisting of 'src' and 'tgt' keys,
corresponding to source (prompt) and response (target) utterances.
'''
if example['tgt']:
example_input_ids = \
example['src'] + [self.tokenizer.eos_token_id] + example['tgt'] + [self._pad_token_id]
else:
example_input_ids = \
example['src'] + [self.tokenizer.eos_token_id]
return torch.tensor(example_input_ids, dtype=torch.long)
def _construct_target_ids(self, example):
'''
:param example: a dict consisting of 'src' and 'tgt' keys,
corresponding to source (prompt) and response (target) utterances.
'''
if example['tgt']:
example_target_ids = \
[self._targets_ignore_index]*(len(example['src'])+1) + example['tgt'] + [self.tokenizer.eos_token_id]
else:
example_target_ids = \
[self._targets_ignore_index]*(len(example['src'])+1)
return torch.tensor(example_target_ids, dtype=torch.long)
def _construct_token_type_ids(self, example):
'''
:param example: a dict consisting of 'src' and 'tgt' keys,
corresponding to source (prompt) and response (target) utterances.
'''
if example['tgt']:
example_token_type_ids = \
[0] * (len(example['src'])+1) + [1] * (len(example['tgt'])+1)
else:
example_token_type_ids = \
[0] * (len(example['src'])+1)
return torch.tensor(example_token_type_ids, dtype=torch.long)
def _construct_position_ids(self, example):
'''
:param example: a dict consisting of 'src' and 'tgt' keys,
corresponding to source (prompt) and response (target) utterances.
'''
if example['tgt']:
input_len = len(example['src']) + 1 + len(example['tgt'])
example_position_ids = [i for i in range(input_len)] + [0]
else:
input_len = len(example['src']) + 1
example_position_ids = [i for i in range(input_len)]
return torch.tensor(example_position_ids, dtype=torch.long)
def _construct_attention_mask(self, example):
'''
:param example: a dict consisting of 'src' and 'tgt' keys,
corresponding to source (prompt) and response (target) utterances.
'''
if example['tgt']:
example_attention_mask = \
[1] * (len(example['src']) + len(example['tgt']) + 1) + [0]
else:
example_attention_mask = \
[1] * (len(example['src']) + 1)
return torch.tensor(example_attention_mask, dtype=torch.long)
def __call__(self, batch):
'''
Duplicates `input_ids` into `labels`, then masks prompt tokens in labels tensor.
'''
# join, mask, and generate token type ids
input_ids = []
target_ids = []
token_type_ids = []
position_ids = []
attention_masks = []
for example in batch:
# construct input ids: join src and tgt with eos token, and adding one pad token to the right
example_input_ids_tensor = self._construct_input_ids(example)
input_ids.append(example_input_ids_tensor)
# construct target ids: join len(src)+1 `_targets_ignore_index` tokens with tgt and one eos token to the right
example_target_ids_tensor = self._construct_target_ids(example)
target_ids.append(example_target_ids_tensor)
# construct token type ids: 1 indicates response (including trailing eos token), 0 otherwise (prompt and pad)
example_token_type_ids_tensor = self._construct_token_type_ids(example)
token_type_ids.append(example_token_type_ids_tensor)
# construct position ids: simply increment from 0
example_position_ids_tensor = self._construct_position_ids(example)
position_ids.append(example_position_ids_tensor)
# construct attention mask: model should not attend to padding
example_attention_mask_tensor = self._construct_attention_mask(example)
attention_masks.append(example_attention_mask_tensor)
# pad
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self._pad_token_id)[:, :self.max_len]
position_ids = pad_sequence(position_ids, batch_first=True, padding_value=0)[:, :self.max_len]
token_type_ids = pad_sequence(token_type_ids, batch_first=True, padding_value=0)[:, :self.max_len]
target_ids = pad_sequence(target_ids, batch_first=True, padding_value=self._pad_token_id)[:, :self.max_len]
attention_masks = pad_sequence(attention_masks, batch_first=True, padding_value=0)[:, :self.max_len]
return {
'input_ids': input_ids,
'position_ids': position_ids,
'token_type_ids': token_type_ids,
'target_ids': target_ids,
'attention_masks': attention_masks
}
class DialogCollateExperimental:
'''
DIaloGPT training.
collate_fn in dataloader is used for post processing on a single batch,
unlike __getitem__ in dataset class which returns a single example.
'''
def __init__(
self,
tokenizer,
max_len = 512,
_targets_ignore_index = -100,
_pad_token_id = 0
):
self.tokenizer = tokenizer
self.max_len = max_len # long sequences will be truncated to this length
self._targets_ignore_index = _targets_ignore_index
self._pad_token_id = _pad_token_id
def _construct_input_ids(self, example):
'''
:param example: a dict consisting of 'src' and 'tgt' keys,
corresponding to source (prompt) and response (target) utterances.
'''
if example['tgt']:
example_input_ids = \
example['src'] + [self.tokenizer.eos_token_id] + example['tgt'] + [self._pad_token_id]
else:
example_input_ids = \
example['src'] + [self.tokenizer.eos_token_id]
return torch.tensor(example_input_ids, dtype=torch.long)
def _construct_target_ids(self, example):
'''
:param example: a dict consisting of 'src' and 'tgt' keys,
corresponding to source (prompt) and response (target) utterances.
'''
if example['tgt']:
example_target_ids = \
example['src'] + [self.tokenizer.eos_token_id] + example['tgt'] + [self.tokenizer.eos_token_id]
else:
example_target_ids = \
example['src'] + [self.tokenizer.eos_token_id]
return torch.tensor(example_target_ids, dtype=torch.long)
def _construct_token_type_ids(self, example):
'''
:param example: a dict consisting of 'src' and 'tgt' keys,
corresponding to source (prompt) and response (target) utterances.
'''
if example['tgt']:
example_token_type_ids = \
[0] * (len(example['src'])+1) + [1] * (len(example['tgt'])+1)
else:
example_token_type_ids = \
[0] * (len(example['src'])+1)
return torch.tensor(example_token_type_ids, dtype=torch.long)
def _construct_position_ids(self, example):
'''
:param example: a dict consisting of 'src' and 'tgt' keys,
corresponding to source (prompt) and response (target) utterances.
'''
if example['tgt']:
input_len = len(example['src']) + 1 + len(example['tgt'])
example_position_ids = [i for i in range(input_len)] + [0]
else:
input_len = len(example['src']) + 1
example_position_ids = [i for i in range(input_len)]
return torch.tensor(example_position_ids, dtype=torch.long)
def _construct_attention_mask(self, example):
'''
:param example: a dict consisting of 'src' and 'tgt' keys,
corresponding to source (prompt) and response (target) utterances.
'''
if example['tgt']:
example_attention_mask = \
[1] * (len(example['src']) + len(example['tgt']) + 1) + [0]
else:
example_attention_mask = \
[1] * (len(example['src']) + 1)
return torch.tensor(example_attention_mask, dtype=torch.long)
def __call__(self, batch):
'''
Duplicates `input_ids` into `labels`, then masks prompt tokens in labels tensor.
'''
# join, mask, and generate token type ids
input_ids = []
target_ids = []
token_type_ids = []
position_ids = []
attention_masks = []
for example in batch:
# construct input ids: join src and tgt with eos token, and adding one pad token to the right
example_input_ids_tensor = self._construct_input_ids(example)
input_ids.append(example_input_ids_tensor)
# construct target ids: join len(src)+1 `_targets_ignore_index` tokens with tgt and one eos token to the right
example_target_ids_tensor = self._construct_target_ids(example)
target_ids.append(example_target_ids_tensor)
# construct token type ids: 1 indicates response (including trailing eos token), 0 otherwise (prompt and pad)
example_token_type_ids_tensor = self._construct_token_type_ids(example)
token_type_ids.append(example_token_type_ids_tensor)
# construct position ids: simply increment from 0
example_position_ids_tensor = self._construct_position_ids(example)
position_ids.append(example_position_ids_tensor)
# construct attention mask: model should not attend to padding
example_attention_mask_tensor = self._construct_attention_mask(example)
attention_masks.append(example_attention_mask_tensor)
# pad
# input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self._pad_token_id)[:, :self.max_len]
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=0)[:, :self.max_len]
position_ids = pad_sequence(position_ids, batch_first=True, padding_value=0)[:, :self.max_len]
token_type_ids = pad_sequence(token_type_ids, batch_first=True, padding_value=0)[:, :self.max_len]
target_ids = pad_sequence(target_ids, batch_first=True, padding_value=0)[:, :self.max_len]
attention_masks = pad_sequence(attention_masks, batch_first=True, padding_value=0)[:, :self.max_len]
return {
'input_ids': input_ids,
'position_ids': position_ids,
'token_type_ids': token_type_ids,
'target_ids': target_ids,
'attention_masks': attention_masks
}
class CausalLMCollate:
'''
Classic GPT2 training.
'''
def __init__(
self,
tokenizer,
max_len = 512
):
self.tokenizer = tokenizer
self.max_len = max_len
def __call__(self, batch):
'''
`batch`: a list of dicts, which contain the input strings.
'''
batch_tensors = {}
batch_encoded = self.tokenizer(
[d['text'] for d in batch],
truncation = True,
max_length = self.max_len,
padding = "longest"
)
batch_tensors['input_ids'] = torch.tensor(batch_encoded['input_ids'])
batch_tensors['attention_mask'] = torch.tensor(batch_encoded['attention_mask'])
batch_tensors['target_ids'] = batch_tensors['input_ids']
return batch_tensors