forked from zachluo/convlstm_anomaly_detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetector.py
216 lines (191 loc) · 8.55 KB
/
detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#!/usr/bin/env python
"""
Do windowed detection by classifying a number of images/crops at once,
optionally using the selective search window proposal method.
This implementation follows ideas in
Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik.
Rich feature hierarchies for accurate object detection and semantic
segmentation.
http://arxiv.org/abs/1311.2524
The selective_search_ijcv_with_python code required for the selective search
proposal mode is available at
https://github.com/sergeyk/selective_search_ijcv_with_python
"""
import numpy as np
import os
import caffe
class Detector(caffe.Net):
"""
Detector extends Net for windowed detection by a list of crops or
selective search proposals.
Parameters
----------
mean, input_scale, raw_scale, channel_swap : params for preprocessing
options.
context_pad : amount of surrounding context to take s.t. a `context_pad`
sized border of pixels in the network input image is context, as in
R-CNN feature extraction.
"""
def __init__(self, model_file, pretrained_file, mean=None,
input_scale=None, raw_scale=None, channel_swap=None,
context_pad=None):
caffe.Net.__init__(self, model_file, pretrained_file, caffe.TEST)
# configure pre-processing
in_ = self.inputs[0]
self.transformer = caffe.io.Transformer(
{in_: self.blobs[in_].data.shape})
self.transformer.set_transpose(in_, (2, 0, 1))
if mean is not None:
self.transformer.set_mean(in_, mean)
if input_scale is not None:
self.transformer.set_input_scale(in_, input_scale)
if raw_scale is not None:
self.transformer.set_raw_scale(in_, raw_scale)
if channel_swap is not None:
self.transformer.set_channel_swap(in_, channel_swap)
self.configure_crop(context_pad)
def detect_windows(self, images_windows):
"""
Do windowed detection over given images and windows. Windows are
extracted then warped to the input dimensions of the net.
Parameters
----------
images_windows: (image filename, window list) iterable.
context_crop: size of context border to crop in pixels.
Returns
-------
detections: list of {filename: image filename, window: crop coordinates,
predictions: prediction vector} dicts.
"""
# Extract windows.
window_inputs = []
for image_fname, windows in images_windows:
image = caffe.io.load_image(image_fname).astype(np.float32)
for window in windows:
window_inputs.append(self.crop(image, window))
# Run through the net (warping windows to input dimensions).
in_ = self.inputs[0]
caffe_in = np.zeros((len(window_inputs), window_inputs[0].shape[2])
+ self.blobs[in_].data.shape[2:],
dtype=np.float32)
for ix, window_in in enumerate(window_inputs):
caffe_in[ix] = self.transformer.preprocess(in_, window_in)
out = self.forward_all(**{in_: caffe_in})
predictions = out[self.outputs[0]]
# Package predictions with images and windows.
detections = []
ix = 0
for image_fname, windows in images_windows:
for window in windows:
detections.append({
'window': window,
'prediction': predictions[ix],
'filename': image_fname
})
ix += 1
return detections
def detect_selective_search(self, image_fnames):
"""
Do windowed detection over Selective Search proposals by extracting
the crop and warping to the input dimensions of the net.
Parameters
----------
image_fnames: list
Returns
-------
detections: list of {filename: image filename, window: crop coordinates,
predictions: prediction vector} dicts.
"""
import selective_search_ijcv_with_python as selective_search
# Make absolute paths so MATLAB can find the files.
image_fnames = [os.path.abspath(f) for f in image_fnames]
windows_list = selective_search.get_windows(
image_fnames,
cmd='selective_search_rcnn'
)
# Run windowed detection on the selective search list.
return self.detect_windows(zip(image_fnames, windows_list))
def crop(self, im, window):
"""
Crop a window from the image for detection. Include surrounding context
according to the `context_pad` configuration.
Parameters
----------
im: H x W x K image ndarray to crop.
window: bounding box coordinates as ymin, xmin, ymax, xmax.
Returns
-------
crop: cropped window.
"""
# Crop window from the image.
crop = im[window[0]:window[2], window[1]:window[3]]
if self.context_pad:
box = window.copy()
crop_size = self.blobs[self.inputs[0]].width # assumes square
scale = crop_size / (1. * crop_size - self.context_pad * 2)
# Crop a box + surrounding context.
half_h = (box[2] - box[0] + 1) / 2.
half_w = (box[3] - box[1] + 1) / 2.
center = (box[0] + half_h, box[1] + half_w)
scaled_dims = scale * np.array((-half_h, -half_w, half_h, half_w))
box = np.round(np.tile(center, 2) + scaled_dims)
full_h = box[2] - box[0] + 1
full_w = box[3] - box[1] + 1
scale_h = crop_size / full_h
scale_w = crop_size / full_w
pad_y = round(max(0, -box[0]) * scale_h) # amount out-of-bounds
pad_x = round(max(0, -box[1]) * scale_w)
# Clip box to image dimensions.
im_h, im_w = im.shape[:2]
box = np.clip(box, 0., [im_h, im_w, im_h, im_w])
clip_h = box[2] - box[0] + 1
clip_w = box[3] - box[1] + 1
assert(clip_h > 0 and clip_w > 0)
crop_h = round(clip_h * scale_h)
crop_w = round(clip_w * scale_w)
if pad_y + crop_h > crop_size:
crop_h = crop_size - pad_y
if pad_x + crop_w > crop_size:
crop_w = crop_size - pad_x
# collect with context padding and place in input
# with mean padding
context_crop = im[box[0]:box[2], box[1]:box[3]]
context_crop = caffe.io.resize_image(context_crop, (crop_h, crop_w))
crop = np.ones(self.crop_dims, dtype=np.float32) * self.crop_mean
crop[pad_y:(pad_y + crop_h), pad_x:(pad_x + crop_w)] = context_crop
return crop
def configure_crop(self, context_pad):
"""
Configure crop dimensions and amount of context for cropping.
If context is included, make the special input mean for context padding.
Parameters
----------
context_pad : amount of context for cropping.
"""
# crop dimensions
in_ = self.inputs[0]
tpose = self.transformer.transpose[in_]
inv_tpose = [tpose[t] for t in tpose]
self.crop_dims = np.array(self.blobs[in_].data.shape[1:])[inv_tpose]
#.transpose(inv_tpose)
# context padding
self.context_pad = context_pad
if self.context_pad:
in_ = self.inputs[0]
transpose = self.transformer.transpose.get(in_)
channel_order = self.transformer.channel_swap.get(in_)
raw_scale = self.transformer.raw_scale.get(in_)
# Padding context crops needs the mean in unprocessed input space.
mean = self.transformer.mean.get(in_)
if mean is not None:
inv_transpose = [transpose[t] for t in transpose]
crop_mean = mean.copy().transpose(inv_transpose)
if channel_order is not None:
channel_order_inverse = [channel_order.index(i)
for i in range(crop_mean.shape[2])]
crop_mean = crop_mean[:, :, channel_order_inverse]
if raw_scale is not None:
crop_mean /= raw_scale
self.crop_mean = crop_mean
else:
self.crop_mean = np.zeros(self.crop_dims, dtype=np.float32)