forked from zoezhou1999/BeautifyBasedOnGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeautify_image.py
328 lines (283 loc) · 16.6 KB
/
beautify_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import os
import misc
import numpy as np
import pdb
from config import EasyDict,cache_dir
import tfutil
import argparse
import csv
import tensorflow as tf
import tensorflow_hub as hub
import PIL
from PIL import Image
# import matplotlib.pyplot as plt
import sys
import bz2
from keras.utils import get_file
from ffhq_dataset.face_alignment import image_align
from ffhq_dataset.landmarks_detector import LandmarksDetector
import multiprocessing
import pickle
from tqdm import tqdm
import PIL.Image
import dnnlib
import dnnlib.tflib as tflib
from encoder.generator_model import Generator
from encoder.perceptual_model import PerceptualModel, load_images
from keras.models import load_model
import gc
from beauty_prediction import beautyrater
from identity_prediction import facenet
def unpack_bz2(src_path):
data = bz2.BZ2File(src_path).read()
dst_path = src_path[:-4]
with open(dst_path, 'wb') as fp:
fp.write(data)
return dst_path
def split_to_batches(l, n):
for i in range(0, len(l), n):
yield l[i:i + n]
# initialize parser arguments
parser = argparse.ArgumentParser()
parser.add_argument('--results_dir', '-results_dir', help='name of training experiment folder', default='dean_cond_batch16', type=str)
parser.add_argument('--labels_size', '-labels_size', help='size of labels vector', default=572, type=int)
parser.add_argument('--alpha', '-alpha', help='weight of normal loss in relation to vgg loss', default=0.7, type=float)
parser.add_argument('--gpu', '-gpu', help='gpu index for the algorithm to run on', default='0', type=str)
# parser.add_argument('--image_path', '-image_path', help='full path to image', default='../datasets/ffhq_selected_128x128', type=str)
parser.add_argument('--resolution', '-resolution', help='resolution of the generated image', default=128, type=int)
parser.add_argument('--aligned_dir', help='Directory for storing aligned images',default="beautify_image_alighed")
parser.add_argument('--output_size', default=128, help='The dimension of images for input to the model', type=int)
parser.add_argument('--x_scale', default=1, help='Scaling factor for x dimension', type=float)
parser.add_argument('--y_scale', default=1, help='Scaling factor for y dimension', type=float)
parser.add_argument('--em_scale', default=0.1, help='Scaling factor for eye-mouth distance', type=float)
parser.add_argument('--use_alpha', default=False, help='Add an alpha channel for masking', type=bool)
parser.add_argument('--iterations_to_save', default=50, help='iterations_to_save', type=int)
parser.add_argument('--src_dir', help='Directory with images for encoding')
parser.add_argument('--generated_images_dir', help='Directory for storing generated images', default="generated_images")
parser.add_argument('--dlatent_dir', help='Directory for storing dlatent representations', default="latent_representations")
parser.add_argument('--dlabel_dir', help='Directory for storing dlatent representations', default="label_representations")
parser.add_argument('--data_dir', default='data', help='Directory for storing optional models')
parser.add_argument('--mask_dir', default='masks', help='Directory for storing optional masks')
parser.add_argument('--load_last', default='', help='Start with embeddings from directory')
parser.add_argument('--landmarks_model_path', help='Fetch a fl model', default='../model_results/encoder/shape_predictor_68_face_landmarks.dat')
parser.add_argument('--batch_size', default=1, help='Batch size for generator and perceptual model', type=int)
# Perceptual model params
parser.add_argument('--image_size', default=256, help='Size of images for perceptual model', type=int)
parser.add_argument('--resnet_image_size', default=256, help='Size of images for the Resnet model', type=int)
parser.add_argument('--lr', default=0.01, help='Learning rate for perceptual model', type=float)
parser.add_argument('--decay_rate', default=0.8, help='Decay rate for learning rate', type=float)
parser.add_argument('--iterations', default=500, help='Number of optimization steps for each batch', type=int)
parser.add_argument('--decay_steps', default=10, help='Decay steps for learning rate decay (as a percent of iterations)', type=float)
parser.add_argument('--load_effnet', default='../model_results/encoder/finetuned_effnet.h5', help='Model to load for EfficientNet approximation of dlatents')
parser.add_argument('--load_resnet', default='../model_results/encoder/finetuned_resnet.h5', help='Model to load for ResNet approximation of dlatents')
parser.add_argument('--load_perc_model', default='../model_results/encoder/vgg16_zhang_perceptual.pkl', help='Model to load for ResNet approximation of dlatents')
parser.add_argument('--load_vgg_model', default='data/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5', help='Model to load for VGG16')
parser.add_argument('--load_vgg_beauty_rater_model', default='../Beholder-GAN-original-dump/beauty_prediction/trained_model/VGG16_beauty_rates-new.pt', help='Model to load for VGG16')
parser.add_argument('--load_facenet_model', default='../model_results/facenet/20180402-114759/20180402-114759.pb', help='Model to load for VGG16')
# Loss function options
parser.add_argument('--use_vgg_loss', default=0.4, help='Use VGG perceptual loss; 0 to disable, > 0 to scale.', type=float)
parser.add_argument('--use_vgg_layer', default=9, help='Pick which VGG layer to use.', type=int)
parser.add_argument('--use_pixel_loss', default=1.5, help='Use logcosh image pixel loss; 0 to disable, > 0 to scale.', type=float)
parser.add_argument('--use_mssim_loss', default=100, help='Use MS-SIM perceptual loss; 0 to disable, > 0 to scale.', type=float)
parser.add_argument('--use_lpips_loss', default=100, help='Use LPIPS perceptual loss; 0 to disable, > 0 to scale.', type=float)
# parser.add_argument('--use_l1_penalty', default=1, help='Use L1 penalty on latents; 0 to disable, > 0 to scale.', type=float)
parser.add_argument('--use_beauty_score_loss', default=100, help='Use LPIPS perceptual loss; 0 to disable, > 0 to scale.', type=float)
#
# Generator params
parser.add_argument('--randomize_noise', default=False, help='Add noise to dlatents during optimization', type=bool)
parser.add_argument('--tile_dlatents', default=False, help='Tile dlatents to use a single vector at each scale', type=bool)
parser.add_argument('--clipping_threshold', default=1.0, help='Stochastic clipping of gradient values outside of this threshold', type=float)
# Masking params
parser.add_argument('--load_mask', default=False, help='Load segmentation masks', type=bool)
parser.add_argument('--face_mask', default=False, help='Generate a mask for predicting only the face area', type=bool)
parser.add_argument('--use_grabcut', default=True, help='Use grabcut algorithm on the face mask to better segment the foreground', type=bool)
parser.add_argument('--scale_mask', default=1.5, help='Look over a wider section of foreground for grabcut', type=float)
parser.add_argument('--use_aligned', default=1, help='align face before recovery', type=int)
args = parser.parse_args()
# manual parameters
result_subdir = misc.create_result_subdir('results', 'inference_test')
misc.init_output_logging()
args.aligned_dir=os.path.join(result_subdir, args.aligned_dir)
args.dlatent_dir=os.path.join(result_subdir, args.dlatent_dir)
args.dlabel_dir=os.path.join(result_subdir, args.dlabel_dir)
args.generated_images_dir=os.path.join(result_subdir, args.generated_images_dir)
if os.path.exists(args.aligned_dir) == False:
os.mkdir(args.aligned_dir)
# initialize TensorFlow
print('Initializing TensorFlow...')
env = EasyDict() # Environment variables, set by the main program in train.py.
env.TF_CPP_MIN_LOG_LEVEL = '1' # Print warnings and errors, but disable debug info.
env.CUDA_VISIBLE_DEVICES = args.gpu # Unspecified (default) = Use all available GPUs. List of ints = CUDA device numbers to use. change to '0' if first GPU is better
os.environ.update(env)
tf_config = EasyDict() # TensorFlow session config, set by tfutil.init_tf().
tf_config['graph_options.place_pruned_graph'] = True # False (default) = Check that all ops are available on the designated device.
tf_config['gpu_options.allow_growth'] = True
tfutil.init_tf(tf_config)
if args.use_aligned==1:
landmarks_detector = LandmarksDetector(args.landmarks_model_path)
aligned_face_path=None
ALIGNED_IMAGES_DIR = args.aligned_dir
for img_name in os.listdir(args.src_dir):
print('Aligning %s ...' % img_name)
try:
raw_img_path = os.path.join(args.src_dir, img_name)
fn = face_img_name = '%s_%02d.png' % (os.path.splitext(img_name)[0], 1)
if os.path.isfile(fn):
continue
print('Getting landmarks...')
ld=landmarks_detector.get_landmarks(raw_img_path)
if len(ld)==0:
print("Cannot get landmarks so use original image as aligned image")
# Load in-the-wild image.
if not os.path.isfile(raw_img_path):
print('Cannot find source image in {}'.format(raw_img_path))
img = PIL.Image.open(raw_img_path)
# Save aligned image.
face_img_name = '%s_%02d.png' % (os.path.splitext(img_name)[0], 1)
aligned_face_path = os.path.join(ALIGNED_IMAGES_DIR, face_img_name)
img.save(aligned_face_path, 'PNG')
print('Wrote result %s' % aligned_face_path)
else:
for i, face_landmarks in enumerate(ld, start=1):
try:
print('Starting face alignment...')
face_img_name = '%s_%02d.png' % (os.path.splitext(img_name)[0], i)
aligned_face_path = os.path.join(ALIGNED_IMAGES_DIR, face_img_name)
image_align(raw_img_path, aligned_face_path, face_landmarks, output_size=args.output_size, x_scale=args.x_scale, y_scale=args.y_scale, em_scale=args.em_scale, alpha=args.use_alpha)
print('Wrote result %s' % aligned_face_path)
break #only use first face found!
except:
print("Exception in face alignment!")
except:
print("Exception in landmark detection!")
#release memory
del landmarks_detector
gc.collect()
ref_images=None
if args.use_aligned==1:
ref_images = [os.path.join(args.aligned_dir, x) for x in os.listdir(args.aligned_dir)]
ref_images = list(filter(os.path.isfile, ref_images))
if len(ref_images) == 0:
raise Exception('%s is empty' % args.aligned_dir)
else:
ref_images = [os.path.join(args.src_dir, x) for x in os.listdir(args.src_dir)]
ref_images = list(filter(os.path.isfile, ref_images))
if len(ref_images) == 0:
raise Exception('%s is empty' % args.src_dir)
#release memory
# del beautyrater_model
# del facenet_model
# gc.collect()
args.decay_steps *= 0.01 * args.iterations # Calculate steps as a percent of total iterations
os.makedirs(args.data_dir, exist_ok=True)
os.makedirs(args.mask_dir, exist_ok=True)
os.makedirs(args.generated_images_dir, exist_ok=True)
os.makedirs(args.dlatent_dir, exist_ok=True)
os.makedirs(args.dlabel_dir, exist_ok=True)
# Initialize generator and perceptual model
# load network
network_pkl = misc.locate_network_pkl(args.results_dir)
print('Loading network from "%s"...' % network_pkl)
G, D, Gs = misc.load_network_pkl(args.results_dir, None)
# initiate random input
latents = misc.random_latents(1, Gs, random_state=np.random.RandomState(800))
labels = np.random.rand(1, args.labels_size)
generator = Generator(Gs, labels_size=572, batch_size=1, clipping_threshold=args.clipping_threshold, model_res=args.resolution)
perc_model = None
if (args.use_lpips_loss > 0.00000001):
with open(args.load_perc_model,"rb") as f:
perc_model = pickle.load(f)
ff_model = None
beautyrater_model=beautyrater.BeautyRater(args.load_vgg_beauty_rater_model)
facenet_model=facenet.FaceNet(args.load_facenet_model)
perceptual_model = PerceptualModel(args, perc_model=perc_model, batch_size=args.batch_size)
perceptual_model.build_perceptual_model(generator)
# Optimize (only) dlatents by minimizing perceptual loss between reference and generated images in feature space
for batch_index, images_batch in enumerate(tqdm(split_to_batches(ref_images, args.batch_size), total=len(ref_images)//args.batch_size)):
names = [os.path.splitext(os.path.basename(x))[0] for x in images_batch]
dlatents = None
dlabels=None
constant_labels=None
for image_path in images_batch:
f1_labels=beautyrater_model.predict(image_path)
f2_labels=facenet_model.singlePredict(image_path)
cl=np.hstack([f1_labels,f2_labels]).astype(np.float32)
if (constant_labels is None):
constant_labels = cl
else:
constant_labels = np.vstack((constant_labels,cl))
perceptual_model.set_constant_labels(constant_labels)
perceptual_model.set_reference_images(images_batch)
if (args.load_last != ''): # load previous dlatents for initialization
for name in names:
dl = np.expand_dims(np.load(os.path.join(args.load_last, f'{name}.npy')),axis=0)
if (dlatents is None):
dlatents = dl
else:
dlatents = np.vstack((dlatents,dl))
else:
if (ff_model is None):
if os.path.exists(args.load_resnet):
print("Loading ResNet Model:")
ff_model = load_model(args.load_resnet)
from keras.applications.resnet50 import preprocess_input
if (ff_model is None):
if os.path.exists(args.load_effnet):
import efficientnet
print("Loading EfficientNet Model:")
ff_model = load_model(args.load_effnet)
from efficientnet import preprocess_input
if (ff_model is not None): # predict initial dlatents with ResNet model
dlatents = ff_model.predict(preprocess_input(load_images(images_batch,image_size=args.resnet_image_size)))
dlatents=np.mean(dlatents,axis=1)
# dlatents = misc.random_latents(1, Gs, random_state=np.random.RandomState(800))
if dlatents is not None:
generator.set_dlatents(dlatents)
dlabels=np.random.rand(args.batch_size, args.labels_size)
if dlabels is not None:
generator.set_dlabels(dlabels)
op = perceptual_model.optimize([generator.dlatent_variable, generator.dlabel_variable], iterations=args.iterations)
pbar = tqdm(op, leave=False, total=args.iterations)
vid_count = 0
best_loss = None
best_dlatent = None
best_dlabel=None
history=[]
prefix="".join(names)
prefix=prefix[0:prefix.find("_")]
result_subsubdir=os.path.join(result_subdir,prefix)
if os.path.exists(result_subsubdir) == False:
os.mkdir(result_subsubdir)
for i, loss_dict in enumerate(pbar):
pbar.set_description(" ".join(names) + ": " + "; ".join(["{} {:.4f}".format(k, v)
for k, v in loss_dict.items()]))
if best_loss is None or loss_dict["loss"] < best_loss:
best_loss = loss_dict["loss"]
best_dlatent, best_dlabel= generator.get_dvariables()
generator.stochastic_clip_dvariables()
history.append((loss_dict["loss"], generator.get_dvariables()))
if i % args.iterations_to_save == 0 and i > 0:
print("saving reconstruction output for iteration num {}".format(i))
if best_dlatent is not None and best_dlabel is not None:
generator.get_beautify_image(dlatents=best_dlatent,dlabels=best_dlabel, index=i,dir=result_subsubdir)
generator.get_beautify_image(dlatents=best_dlatent,dlabels=best_dlabel, index=args.iterations,dir=result_subsubdir)
history.append((best_loss, best_dlatent, best_dlabel))
print(" ".join(names), " Loss {:.4f}".format(best_loss))
# Generate images from found dlatents and save them
generator.set_dlatents(best_dlatent)
generator.set_dlabels(best_dlabel)
generated_images = generator.generate_images()
generated_dlatents,generated_dlabels = generator.get_dvariables()
for img_array, dlatent, dlabel, img_name in zip(generated_images, generated_dlatents, generated_dlabels, names):
img = PIL.Image.fromarray(img_array, 'RGB')
img.save(os.path.join(args.generated_images_dir, f'{img_name}.png'), 'PNG')
np.save(os.path.join(args.dlatent_dir, f'{img_name}.npy'), dlatent)
np.save(os.path.join(args.dlabel_dir, f'{img_name}.npy'), dlabel)
# save history of latents
with open(result_subsubdir+'/history_of_latents.txt', 'w') as f:
for item in history:
f.write("{}\n".format(item))
f.write("\n")
generator.reset_dlatents()
generator.reset_dlabels()
gc.collect()