forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DynamicCasts.cpp
877 lines (748 loc) · 32.5 KB
/
DynamicCasts.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
//===--- DynamicCasts.cpp - Utilities for dynamic casts -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Types.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/DynamicCasts.h"
using namespace swift;
using namespace Lowering;
static DynamicCastFeasibility weakenSuccess(DynamicCastFeasibility v) {
if (v == DynamicCastFeasibility::WillSucceed)
return DynamicCastFeasibility::MaySucceed;
return v;
}
static unsigned getAnyMetatypeDepth(CanType type) {
unsigned depth = 0;
while (auto metatype = dyn_cast<AnyMetatypeType>(type)) {
type = metatype.getInstanceType();
depth++;
}
return depth;
}
static bool
mayBridgeToObjectiveC(Module *M, CanType T) {
// If the target type is either an unknown dynamic type, or statically
// known to bridge, the cast may succeed.
// TODO: We could be more precise with the bridged-to type.
if (T->hasArchetype())
return true;
if (T->isAnyExistentialType())
return true;
if (M->getASTContext().getBridgedToObjC(M, /*inExpression*/ false,
T, nullptr))
return true;
return false;
}
static bool canClassOrSuperclassesHaveExtensions(ClassDecl *CD,
bool isWholeModuleOpts) {
while (CD) {
// Public classes can always be extended
if (CD->getEffectiveAccess() == Accessibility::Public)
return true;
// Internal classes can be extended, if we are not in a
// whole-module-optimizations mode.
if (CD->getEffectiveAccess() == Accessibility::Internal &&
!isWholeModuleOpts)
return true;
if (!CD->hasSuperclass())
break;
CD = CD->getSuperclass()->getClassOrBoundGenericClass();
}
return false;
}
/// Try to classify a conversion from non-existential type
/// into an existential type by performing a static check
/// of protocol conformances if it is possible.
static DynamicCastFeasibility
classifyDynamicCastToProtocol(CanType source,
CanType target,
bool isWholeModuleOpts) {
assert(target.isExistentialType() &&
"target should be an existential type");
if (source == target)
return DynamicCastFeasibility::WillSucceed;
auto *SourceNominalTy = source.getAnyNominal();
if (!SourceNominalTy)
return DynamicCastFeasibility::MaySucceed;
auto *TargetProtocol = target.getAnyNominal();
if (!TargetProtocol)
return DynamicCastFeasibility::MaySucceed;
auto SourceProtocols = SourceNominalTy->getAllProtocols();
// Check all protocols implemented by the type.
for (auto *Protocol : SourceProtocols) {
if (Protocol == TargetProtocol)
return DynamicCastFeasibility::WillSucceed;
}
// If we are casting a protocol, then the cast will fail
// as we have not found any conformances and protocols cannot
// be extended currently.
// NOTE: If we allow protocol extensions in the future, this
// conditional statement should be removed.
if (isa<ProtocolType>(source)) {
return DynamicCastFeasibility::WillFail;
}
// If it is a class and it can be proven that this class and its
// superclasses cannot be extended, then it is safe to proceed.
// No need to check this for structs, as they do not have any
// superclasses.
if (auto *CD = source.getClassOrBoundGenericClass()) {
if (canClassOrSuperclassesHaveExtensions(CD, isWholeModuleOpts))
return DynamicCastFeasibility::MaySucceed;
// Derived types may conform to the protocol.
if (!CD->isFinal()) {
// TODO: If it is a private type or internal type and we
// can prove that there are no derived types conforming to a
// protocol, then we can still return WillFail.
return DynamicCastFeasibility::MaySucceed;
}
}
// If the source type is private or target protocol is private,
// then conformances cannot be changed at run-time, because only this
// file could have implemented them, but no conformances were found.
// Therefore it is safe to make a negative decision at compile-time.
if (SourceNominalTy->getEffectiveAccess() == Accessibility::Private ||
TargetProtocol->getEffectiveAccess() == Accessibility::Private) {
// This cast is always false. Replace it with a branch to the
// failure block.
return DynamicCastFeasibility::WillFail;
}
// If we are in a whole-module compilation and
// if the source type is internal or target protocol is internal,
// then conformances cannot be changed at run-time, because only this
// module could have implemented them, but no conformances were found.
// Therefore it is safe to make a negative decision at compile-time.
if (isWholeModuleOpts &&
(SourceNominalTy->getEffectiveAccess() == Accessibility::Internal ||
TargetProtocol->getEffectiveAccess() == Accessibility::Internal)) {
return DynamicCastFeasibility::WillFail;
}
return DynamicCastFeasibility::MaySucceed;
}
/// Check if a given type conforms to _BridgedToObjectiveC protocol.
bool swift::isObjectiveCBridgeable(Module *M, CanType Ty) {
// Retrieve the _BridgedToObjectiveC protocol.
auto bridgedProto =
M->getASTContext().getProtocol(KnownProtocolKind::_ObjectiveCBridgeable);
if (bridgedProto) {
// Find the conformance of the value type to _BridgedToObjectiveC.
// Check whether the type conforms to _BridgedToObjectiveC.
auto conformance = M->lookupConformance(Ty, bridgedProto, nullptr);
return (conformance.getInt() != ConformanceKind::DoesNotConform);
}
return false;
}
/// Check if a given type conforms to _Error protocol.
bool swift::isErrorType(Module *M, CanType Ty) {
// Retrieve the ErrorType protocol.
auto errorTypeProto =
M->getASTContext().getProtocol(KnownProtocolKind::ErrorType);
if (errorTypeProto) {
// Find the conformance of the value type to _BridgedToObjectiveC.
// Check whether the type conforms to _BridgedToObjectiveC.
auto conformance = M->lookupConformance(Ty, errorTypeProto, nullptr);
return (conformance.getInt() != ConformanceKind::DoesNotConform);
}
return false;
}
/// Try to classify the dynamic-cast relationship between two types.
DynamicCastFeasibility
swift::classifyDynamicCast(Module *M,
CanType source,
CanType target,
bool isSourceTypeExact,
bool isWholeModuleOpts) {
if (source == target) return DynamicCastFeasibility::WillSucceed;
auto sourceObject = source.getAnyOptionalObjectType();
auto targetObject = target.getAnyOptionalObjectType();
// A common level of optionality doesn't affect the feasibility.
if (sourceObject && targetObject) {
return classifyDynamicCast(M, sourceObject, targetObject);
// Nor does casting to a more optional type.
} else if (targetObject) {
return classifyDynamicCast(M, source, targetObject,
/* isSourceTypeExact */ false,
isWholeModuleOpts);
// Casting to a less-optional type can always fail.
} else if (sourceObject) {
return weakenSuccess(classifyDynamicCast(M, sourceObject, target,
/* isSourceTypeExact */ false,
isWholeModuleOpts));
}
assert(!sourceObject && !targetObject);
// Assume that casts to or from existential types or involving
// dependent types can always succeed. This is over-conservative.
if (source->hasArchetype() || source.isExistentialType() ||
target->hasArchetype() || target.isExistentialType()) {
auto *SourceNominalTy = source.getAnyNominal();
// Check conversions from non-protocol types into protocol types.
if (!source.isExistentialType() &&
SourceNominalTy &&
target.isExistentialType())
return classifyDynamicCastToProtocol(source, target, isWholeModuleOpts);
// Casts from class existential into a non-class can never succeed.
if (source->isClassExistentialType() &&
!target.isAnyExistentialType() &&
!target.getClassOrBoundGenericClass() &&
!isa<ArchetypeType>(target) &&
!mayBridgeToObjectiveC(M, target)) {
assert((target.getEnumOrBoundGenericEnum() ||
target.getStructOrBoundGenericStruct() ||
isa<TupleType>(target) ||
isa<SILFunctionType>(target) ||
isa<FunctionType>(target) ||
isa<MetatypeType>(target)) &&
"Target should be an enum, struct, tuple, metatype or function type");
return DynamicCastFeasibility::WillFail;
}
return DynamicCastFeasibility::MaySucceed;
}
// Metatype casts.
while (auto sourceMetatype = dyn_cast<AnyMetatypeType>(source)) {
auto targetMetatype = dyn_cast<AnyMetatypeType>(target);
if (!targetMetatype) return DynamicCastFeasibility::WillFail;
source = sourceMetatype.getInstanceType();
target = targetMetatype.getInstanceType();
if (source == target &&
targetMetatype.isAnyExistentialType() ==
sourceMetatype.isAnyExistentialType())
return DynamicCastFeasibility::WillSucceed;
if (targetMetatype.isAnyExistentialType() &&
(isa<ProtocolType>(target) || isa<ProtocolCompositionType>(target))) {
auto Feasibility = classifyDynamicCastToProtocol(source,
target,
isWholeModuleOpts);
// Cast from existential metatype to existential metatype may still
// succeed, even if we cannot prove anything statically.
if (Feasibility != DynamicCastFeasibility::WillFail ||
!sourceMetatype.isAnyExistentialType())
return Feasibility;
}
// If isSourceTypeExact is true, we know we are casting the result of a
// MetatypeInst instruction.
if (isSourceTypeExact) {
// If source or target are existentials, then it can be casted
// successfully only into itself.
if ((target.isAnyExistentialType() || source.isAnyExistentialType()) &&
target != source)
return DynamicCastFeasibility::WillFail;
}
// Casts from class existential metatype into a concrete non-class metatype
// can never succeed.
if (source->isClassExistentialType() &&
!target.isAnyExistentialType() &&
!target.getClassOrBoundGenericClass())
return DynamicCastFeasibility::WillFail;
// TODO: prove that some conversions to existential metatype will
// obviously succeed/fail.
// TODO: prove that some conversions from class existential metatype
// to a concrete non-class metatype will obviously fail.
// TODO: class metatype to/from AnyObject
// TODO: protocol concrete metatype to/from ObjCProtocol
if (isa<ExistentialMetatypeType>(sourceMetatype) ||
isa<ExistentialMetatypeType>(targetMetatype))
return (getAnyMetatypeDepth(source) == getAnyMetatypeDepth(target)
? DynamicCastFeasibility::MaySucceed
: DynamicCastFeasibility::WillFail);
// If both metatypes are class metatypes, check if classes can be
// casted.
if (source.getClassOrBoundGenericClass() &&
target.getClassOrBoundGenericClass())
return classifyDynamicCast(M, source, target, false, isWholeModuleOpts);
// Different structs cannot be casted to each other.
if (source.getStructOrBoundGenericStruct() &&
target.getStructOrBoundGenericStruct() &&
source != target)
return DynamicCastFeasibility::WillFail;
// Different enums cannot be casted to each other.
if (source.getEnumOrBoundGenericEnum() &&
target.getEnumOrBoundGenericEnum() &&
source != target)
return DynamicCastFeasibility::WillFail;
// If we don't know any better, assume that the cast may succeed.
return DynamicCastFeasibility::MaySucceed;
}
// Class casts.
auto sourceClass = source.getClassOrBoundGenericClass();
auto targetClass = target.getClassOrBoundGenericClass();
if (sourceClass && targetClass) {
if (target->isSuperclassOf(source, nullptr))
return DynamicCastFeasibility::WillSucceed;
if (source->isSuperclassOf(target, nullptr))
return DynamicCastFeasibility::MaySucceed;
// FIXME: bridged types, e.g. CF <-> NS (but not for metatypes).
return DynamicCastFeasibility::WillFail;
}
// FIXME: tuple conversions?
// FIXME: Be more careful with briding conversions from
// NSArray, NSDictionary and NSSet as they may fail?
// Check if there might be a bridging conversion.
if (source->isBridgeableObjectType() && mayBridgeToObjectiveC(M, target)) {
// Try to get the ObjC type which is bridged to target type.
assert(!target.isAnyExistentialType());
Optional<Type> ObjCTy = M->getASTContext().getBridgedToObjC(
M, /*inExpression*/ false, target, nullptr);
if (ObjCTy) {
// If the bridged ObjC type is known, check if
// source type can be casted into it.
return classifyDynamicCast(M, source,
ObjCTy.getValue().getCanonicalTypeOrNull(),
/* isSourceTypeExact */ false, isWholeModuleOpts);
}
return DynamicCastFeasibility::MaySucceed;
}
if (target->isBridgeableObjectType() && mayBridgeToObjectiveC(M, source)) {
// Try to get the ObjC type which is bridged to source type.
assert(!source.isAnyExistentialType());
Optional<Type> ObjCTy = M->getASTContext().getBridgedToObjC(
M, /*inExpression*/ false, source, nullptr);
if (ObjCTy) {
// If the bridged ObjC type is known, check if
// this type can be casted into target type.
return classifyDynamicCast(M,
ObjCTy.getValue().getCanonicalTypeOrNull(),
target,
/* isSourceTypeExact */ false, isWholeModuleOpts);
}
return DynamicCastFeasibility::MaySucceed;
}
// Check if it is a cast between bridged error types.
if (isErrorType(M, source) && isErrorType(M, target)) {
// TODO: Cast to NSError succeeds always.
return DynamicCastFeasibility::MaySucceed;
}
return DynamicCastFeasibility::WillFail;
}
static unsigned getOptionalDepth(CanType type) {
unsigned depth = 0;
while (CanType objectType = type.getAnyOptionalObjectType()) {
depth++;
type = objectType;
}
return depth;
}
namespace {
struct Source {
SILValue Value;
CanType FormalType;
CastConsumptionKind Consumption;
bool isAddress() const { return Value.getType().isAddress(); }
IsTake_t shouldTake() const {
return shouldTakeOnSuccess(Consumption);
}
Source() = default;
Source(SILValue value, CanType formalType, CastConsumptionKind consumption)
: Value(value), FormalType(formalType), Consumption(consumption) {}
};
struct Target {
SILValue Address;
SILType LoweredType;
CanType FormalType;
bool isAddress() const { return (bool) Address; }
Source asAddressSource() const {
assert(isAddress());
return { Address, FormalType, CastConsumptionKind::TakeAlways };
}
Source asScalarSource(SILValue value) const {
assert(!isAddress());
assert(!value.getType().isAddress());
return { value, FormalType, CastConsumptionKind::TakeAlways };
}
Target() = default;
Target(SILValue address, CanType formalType)
: Address(address), LoweredType(address.getType()),
FormalType(formalType) {
assert(LoweredType.isAddress());
}
Target(SILType loweredType, CanType formalType)
: Address(), LoweredType(loweredType), FormalType(formalType) {
assert(!loweredType.isAddress());
}
};
class CastEmitter {
SILBuilder &B;
SILModule &M;
ASTContext &Ctx;
SILLocation Loc;
public:
CastEmitter(SILBuilder &B, Module *swiftModule, SILLocation loc)
: B(B), M(B.getModule()), Ctx(M.getASTContext()), Loc(loc) {}
Source emitTopLevel(Source source, Target target) {
unsigned sourceOptDepth = getOptionalDepth(source.FormalType);
unsigned targetOptDepth = getOptionalDepth(target.FormalType);
assert(sourceOptDepth <= targetOptDepth);
return emitAndInjectIntoOptionals(source, target,
targetOptDepth - sourceOptDepth);
}
private:
const TypeLowering &getTypeLowering(SILType type) {
return M.Types.getTypeLowering(type);
}
SILValue getOwnedScalar(Source source, const TypeLowering &srcTL) {
assert(!source.isAddress());
if (!source.shouldTake())
srcTL.emitRetainValue(B, Loc, source.Value);
return source.Value;
}
Source putOwnedScalar(SILValue scalar, Target target) {
assert(scalar.getType() == target.LoweredType.getObjectType());
if (!target.isAddress())
return target.asScalarSource(scalar);
auto &targetTL = getTypeLowering(target.LoweredType);
targetTL.emitStoreOfCopy(B, Loc, scalar, target.Address,
IsInitialization);
return target.asAddressSource();
}
Source emitSameType(Source source, Target target) {
assert(source.FormalType == target.FormalType);
auto &srcTL = getTypeLowering(source.Value.getType());
// The destination always wants a +1 value, so make the source
// +1 if it's a scalar.
if (!source.isAddress()) {
source.Value = getOwnedScalar(source, srcTL);
source.Consumption = CastConsumptionKind::TakeAlways;
}
// If we've got a scalar and want a scalar, the source is
// exactly right.
if (!target.isAddress() && !source.isAddress())
return source;
// If the destination wants a non-address value, load
if (!target.isAddress()) {
SILValue value = srcTL.emitLoadOfCopy(B, Loc, source.Value,
source.shouldTake());
return target.asScalarSource(value);
}
if (source.isAddress()) {
srcTL.emitCopyInto(B, Loc, source.Value, target.Address,
source.shouldTake(), IsInitialization);
} else {
srcTL.emitStoreOfCopy(B, Loc, source.Value, target.Address,
IsInitialization);
}
return target.asAddressSource();
}
Source emit(Source source, Target target) {
if (source.FormalType == target.FormalType)
return emitSameType(source, target);
// Handle subtype conversions involving optionals.
OptionalTypeKind sourceOptKind;
if (auto sourceObjectType =
source.FormalType.getAnyOptionalObjectType(sourceOptKind)) {
return emitOptionalToOptional(source, sourceOptKind, sourceObjectType,
target);
}
assert(!target.FormalType.getAnyOptionalObjectType());
// The only other thing we return WillSucceed for currently is
// an upcast.
// FIXME: Upcasts between existential metatypes are not handled yet.
// We should generate for it:
// %openedSrcMetatype = open_existential srcMetatype
// init_existental dstMetatype, %openedSrcMetatype
auto &srcTL = getTypeLowering(source.Value.getType());
SILValue value;
if (source.isAddress()) {
value = srcTL.emitLoadOfCopy(B, Loc, source.Value, source.shouldTake());
} else {
value = getOwnedScalar(source, srcTL);
}
value = B.createUpcast(Loc, value, target.LoweredType.getObjectType());
return putOwnedScalar(value, target);
}
Source emitAndInjectIntoOptionals(Source source, Target target,
unsigned depth) {
if (depth == 0)
return emit(source, target);
// Recurse.
EmitSomeState state;
Target objectTarget = prepareForEmitSome(target, state);
Source objectSource =
emitAndInjectIntoOptionals(source, objectTarget, depth - 1);
return emitSome(objectSource, target, state);
}
Source emitOptionalToOptional(Source source,
OptionalTypeKind sourceOptKind,
CanType sourceObjectType,
Target target) {
// Switch on the incoming value.
SILBasicBlock *contBB = B.splitBlockForFallthrough();
SILBasicBlock *noneBB = B.splitBlockForFallthrough();
SILBasicBlock *someBB = B.splitBlockForFallthrough();
// Emit the switch.
std::pair<EnumElementDecl*, SILBasicBlock*> cases[] = {
{ Ctx.getOptionalSomeDecl(sourceOptKind), someBB },
{ Ctx.getOptionalNoneDecl(sourceOptKind), noneBB },
};
if (source.isAddress()) {
B.createSwitchEnumAddr(Loc, source.Value, /*default*/ nullptr, cases);
} else {
B.createSwitchEnum(Loc, source.Value, /*default*/ nullptr, cases);
}
// Create the Some block, which recurses.
B.setInsertionPoint(someBB);
{
auto sourceSomeDecl = Ctx.getOptionalSomeDecl(sourceOptKind);
SILType loweredSourceObjectType =
source.Value.getType().getEnumElementType(sourceSomeDecl, M);
// Form the target for the optional object.
EmitSomeState state;
Target objectTarget = prepareForEmitSome(target, state);
// Form the source value.
AllocStackInst *sourceTemp = nullptr;
Source objectSource;
if (source.isAddress()) {
// TODO: add an instruction for non-destructively getting a
// specific element's data.
SILValue sourceAddr = source.Value;
if (!source.shouldTake()) {
sourceTemp = B.createAllocStack(Loc,
sourceAddr.getType().getObjectType());
sourceAddr = sourceTemp->getAddressResult();
B.createCopyAddr(Loc, source.Value, sourceAddr, IsNotTake,
IsInitialization);
}
sourceAddr = B.createUncheckedTakeEnumDataAddr(Loc, sourceAddr,
sourceSomeDecl, loweredSourceObjectType);
objectSource = Source(sourceAddr, sourceObjectType,
CastConsumptionKind::TakeAlways);
} else {
SILValue sourceObjectValue =
new (M) SILArgument(someBB, loweredSourceObjectType);
objectSource = Source(sourceObjectValue, sourceObjectType,
source.Consumption);
}
Source resultObject = emit(objectSource, objectTarget);
// Deallocate the source temporary if we needed one.
if (sourceTemp) {
B.createDeallocStack(Loc, sourceTemp->getContainerResult());
}
Source result = emitSome(resultObject, target, state);
assert(result.isAddress() == target.isAddress());
if (target.isAddress()) {
B.createBranch(Loc, contBB);
} else {
B.createBranch(Loc, contBB, { result.Value });
}
}
// Create the None block.
B.setInsertionPoint(noneBB);
{
Source result = emitNone(target);
assert(result.isAddress() == target.isAddress());
if (target.isAddress()) {
B.createBranch(Loc, contBB);
} else {
B.createBranch(Loc, contBB, { result.Value });
}
}
// Continuation block.
B.setInsertionPoint(contBB);
if (target.isAddress()) {
return target.asAddressSource();
} else {
SILValue result = new (M) SILArgument(contBB, target.LoweredType);
return target.asScalarSource(result);
}
}
struct EmitSomeState {
EnumElementDecl *SomeDecl;
};
Target prepareForEmitSome(Target target, EmitSomeState &state) {
OptionalTypeKind optKind;
auto objectType = target.FormalType.getAnyOptionalObjectType(optKind);
assert(objectType && "emitting Some into non-optional type");
auto someDecl = Ctx.getOptionalSomeDecl(optKind);
state.SomeDecl = someDecl;
SILType loweredObjectType =
target.LoweredType.getEnumElementType(someDecl, M);
if (target.isAddress()) {
SILValue objectAddr =
B.createInitEnumDataAddr(Loc, target.Address, someDecl,
loweredObjectType);
return { objectAddr, objectType };
} else {
return { loweredObjectType, objectType };
}
}
Source emitSome(Source source, Target target, EmitSomeState &state) {
// If our target is an address, prepareForEmitSome should have set this
// up so that we emitted directly into
if (target.isAddress()) {
B.createInjectEnumAddr(Loc, target.Address, state.SomeDecl);
return target.asAddressSource();
} else {
auto &srcTL = getTypeLowering(source.Value.getType());
auto sourceObject = getOwnedScalar(source, srcTL);
auto source = B.createEnum(Loc, sourceObject, state.SomeDecl,
target.LoweredType);
return target.asScalarSource(source);
}
}
Source emitNone(Target target) {
OptionalTypeKind optKind;
auto objectType = target.FormalType.getAnyOptionalObjectType(optKind);
assert(objectType && "emitting None into non-optional type");
(void) objectType;
auto noneDecl = Ctx.getOptionalNoneDecl(optKind);
if (target.isAddress()) {
B.createInjectEnumAddr(Loc, target.Address, noneDecl);
return target.asAddressSource();
} else {
SILValue res = B.createEnum(Loc, nullptr, noneDecl, target.LoweredType);
return target.asScalarSource(res);
}
}
};
}
/// Emit an unconditional scalar cast that's known to succeed.
SILValue
swift::emitSuccessfulScalarUnconditionalCast(SILBuilder &B, Module *M,
SILLocation loc, SILValue value,
SILType loweredTargetType,
CanType sourceType,
CanType targetType,
SILInstruction *existingCast) {
assert(classifyDynamicCast(M, sourceType, targetType)
== DynamicCastFeasibility::WillSucceed);
// Casts to/from existential types cannot be further improved.
if (sourceType.isAnyExistentialType() ||
targetType.isAnyExistentialType()) {
if (existingCast)
// Indicate that the existing cast cannot be further improved.
return SILValue();
llvm_unreachable("Casts to/from existentials are not supported yet");
}
// Fast path changes that don't change the type.
if (sourceType == targetType)
return value;
Source source(value, sourceType, CastConsumptionKind::TakeAlways);
Target target(loweredTargetType, targetType);
Source result = CastEmitter(B, M, loc).emitTopLevel(source, target);
assert(!result.isAddress());
assert(result.Value.getType() == loweredTargetType);
assert(result.Consumption == CastConsumptionKind::TakeAlways);
return result.Value;
}
bool swift::emitSuccessfulIndirectUnconditionalCast(SILBuilder &B, Module *M,
SILLocation loc,
CastConsumptionKind consumption,
SILValue src,
CanType sourceType,
SILValue dest,
CanType targetType,
SILInstruction *existingCast) {
assert(classifyDynamicCast(M, sourceType, targetType)
== DynamicCastFeasibility::WillSucceed);
assert(src.getType().isAddress());
assert(dest.getType().isAddress());
// Casts between the same types can be always handled here.
// Casts from non-existentials into existentials and
// vice-versa cannot be improved yet.
// Casts between a value type and a class cannot be optimized.
// Therefore generate a simple unconditional_checked_cast_aadr.
if (src.getType() != dest.getType())
if (src.getType().isAnyExistentialType() !=
dest.getType().isAnyExistentialType() ||
!(src.getType().getClassOrBoundGenericClass() &&
dest.getType().getClassOrBoundGenericClass())) {
// If there is an existing cast with the same arguments,
// indicate we cannot improve it.
if (existingCast) {
auto *UCCAI = dyn_cast<UnconditionalCheckedCastAddrInst>(existingCast);
if (UCCAI && UCCAI->getSrc() == src && UCCAI->getDest() == dest &&
UCCAI->getSourceType() == sourceType &&
UCCAI->getTargetType() == targetType &&
UCCAI->getConsumptionKind() == consumption) {
// Indicate that the existing cast cannot be further improved.
return false;
}
}
B.createUnconditionalCheckedCastAddr(loc, consumption, src, sourceType,
dest, targetType);
return true;
}
Source source(src, sourceType, consumption);
Target target(dest, targetType);
Source result = CastEmitter(B, M, loc).emitTopLevel(source, target);
assert(result.isAddress());
assert(result.Value == dest);
assert(result.Consumption == CastConsumptionKind::TakeAlways);
(void) result;
return true;
}
/// Can the given cast be performed by the scalar checked-cast
/// instructions?
///
/// CAUTION: if you introduce bridging conversions to the set of
/// things handleable by the scalar checked casts --- and that's not
/// totally unreasonable --- you will need to make the scalar checked
/// casts take a cast consumption kind.
bool swift::canUseScalarCheckedCastInstructions(CanType sourceType,
CanType targetType) {
// Look through one level of optionality on the source.
auto sourceObjectType = sourceType;
if (auto type = sourceObjectType.getAnyOptionalObjectType())
sourceObjectType = type;
// The source and destination can be metatypes or anything that
// embeds a class reference.
if ((sourceObjectType.isAnyClassReferenceType() ||
isa<AnyMetatypeType>(sourceObjectType)) &&
(targetType->isAnyClassReferenceType() ||
isa<AnyMetatypeType>(targetType)))
return true;
// Otherwise, we need to use the general indirect-cast functions.
return false;
}
/// Carry out the operations required for an indirect conditional cast
/// using a scalar cast operation.
void swift::
emitIndirectConditionalCastWithScalar(SILBuilder &B, Module *M,
SILLocation loc,
CastConsumptionKind consumption,
SILValue src, CanType sourceType,
SILValue dest, CanType targetType,
SILBasicBlock *indirectSuccBB,
SILBasicBlock *indirectFailBB) {
assert(canUseScalarCheckedCastInstructions(sourceType, targetType));
// We only need a different failure block if the cast consumption
// requires us to destroy the source value.
SILBasicBlock *scalarFailBB;
if (!shouldDestroyOnFailure(consumption)) {
scalarFailBB = indirectFailBB;
} else {
scalarFailBB = B.splitBlockForFallthrough();
}
// We always need a different success block.
SILBasicBlock *scalarSuccBB = B.splitBlockForFallthrough();
auto &srcTL = B.getModule().Types.getTypeLowering(src.getType());
// Always take; this works under an assumption that retaining the
// result is equivalent to retaining the source. That means that
// these casts would not be appropriate for bridging-like conversions.
SILValue srcValue = srcTL.emitLoadOfCopy(B, loc, src, IsTake);
SILType targetValueType = dest.getType().getObjectType();
B.createCheckedCastBranch(loc, /*exact*/ false, srcValue, targetValueType,
scalarSuccBB, scalarFailBB);
// Emit the success block.
B.setInsertionPoint(scalarSuccBB); {
auto &targetTL = B.getModule().Types.getTypeLowering(targetValueType);
SILValue succValue =
new (B.getModule()) SILArgument(scalarSuccBB, targetValueType);
if (!shouldTakeOnSuccess(consumption))
targetTL.emitRetainValue(B, loc, succValue);
targetTL.emitStoreOfCopy(B, loc, succValue, dest, IsInitialization);
B.createBranch(loc, indirectSuccBB);
}
// Emit the failure block.
if (shouldDestroyOnFailure(consumption)) {
B.setInsertionPoint(scalarFailBB);
srcTL.emitReleaseValue(B, loc, srcValue);
B.createBranch(loc, indirectFailBB);
}
}