forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bpr_netflix.py
54 lines (47 loc) · 1.82 KB
/
bpr_netflix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example for Bayesian Personalized Ranking with Netflix dataset"""
import cornac
from cornac.data import Reader
from cornac.datasets import netflix
from cornac.eval_methods import RatioSplit
# Load netflix dataset (small version), and binarise ratings using cornac.data.Reader
feedback = netflix.load_feedback(variant="small", reader=Reader(bin_threshold=1.0))
# Define an evaluation method to split feedback into train and test sets
ratio_split = RatioSplit(
data=feedback,
test_size=0.1,
rating_threshold=1.0,
exclude_unknowns=True,
verbose=True,
)
# Instantiate the most popular baseline, BPR, and WBPR models
most_pop = cornac.models.MostPop()
bpr = cornac.models.BPR(
k=50, max_iter=200, learning_rate=0.001, lambda_reg=0.001, verbose=True
)
wbpr = cornac.models.WBPR(
k=50, max_iter=200, learning_rate=0.001, lambda_reg=0.001, verbose=True
)
# Use AUC and Recall@20 for evaluation
auc = cornac.metrics.AUC()
rec_20 = cornac.metrics.Recall(k=20)
# Put everything together into an experiment and run it
cornac.Experiment(
eval_method=ratio_split,
models=[most_pop, bpr, wbpr],
metrics=[auc, rec_20],
user_based=True,
).run()