forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
wmf_example.py
53 lines (47 loc) · 1.6 KB
/
wmf_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example for Collaborative Filtering for Implicit Feedback Datasets (Citeulike)"""
import cornac
from cornac.data import Reader
from cornac.datasets import citeulike
from cornac.eval_methods import RatioSplit
# Load user-item feedback
_, item_ids = citeulike.load_text()
data = citeulike.load_feedback(reader=Reader(item_set=item_ids))
# Instantiate an evaluation method to split data into train and test sets.
ratio_split = RatioSplit(
data=data,
test_size=0.2,
exclude_unknowns=True,
verbose=True,
seed=123,
rating_threshold=0.5,
)
# Instantiate the WMF model
wmf = cornac.models.WMF(
k=50,
max_iter=50,
learning_rate=0.001,
lambda_u=0.01,
lambda_v=0.01,
verbose=True,
seed=123,
)
# Use Recall@300 for evaluation
rec_300 = cornac.metrics.Recall(k=300)
# Instantiate and run an experiment
cornac.Experiment(
eval_method=ratio_split, models=[wmf], metrics=[rec_300], user_based=True
).run()