Distribution-aware Interactive Attention Network and Large-scale Cloud Recognition Benchmark on FY-4A Satellite Image
⭐ our article ⭐
@article{zhang2024distribution,
title={Distribution-aware Interactive Attention Network and Large-scale Cloud Recognition Benchmark on FY-4A Satellite Image},
author={Zhang, Jiaqing and Lei, Jie and Xie, Weiying and Jiang, Kai and Cao, Mingxiang and Li, Yunsong},
journal={arXiv preprint arXiv:2401.03182},
year={2024}
}
Download the FY4A L1 dataset for FY4A
Download the Himawari dataset for Himawari
├── fydatahimawari
│ ├── Himawari
......
│ │ ├── 202005
│ │ │ ├── 05
│ │ │ │ ├── 05
│ │ │ │ │ ├──NC_H08_20200505_0500_L2CLP010_FLDK.02401_02401.nc
│ │ │ │ │ ├──NC_H08_20200505_0510_L2CLP010_FLDK.02401_02401.nc
│ │ │ │ │ ├──NC_H08_20200505_0520_L2CLP010_FLDK.02401_02401.nc
......
│ ├── FY4A
......
│ │ ├── 20200104
│ │ │ ├── FY4A-_AGRI--_N_REGC_1047E_L1-_FDI-_MULT_NOM_20200104003000_20200104003417_4000M_V0001.HDF
│ │ │ ├── FY4A-_AGRI--_N_REGC_1047E_L1-_FDI-_MULT_NOM_20200104003418_20200104003835_4000M_V0001.HDF
......
python split.py
python tools/train.py
python tools/test_production.py
Download the Cloud detection dataset cloud-38 dataset
The directory tree of this dataset is as follows:
├── 38-Cloud_training
│ ├── train_red
│ ├── train_green
│ ├── train_blue
│ ├── train_nir
│ ├── train_gt
│ ├── Natural_False_Color
│ ├── Entire_scene_gts
│ ├── training_patches_38-Cloud.csv
│ ├── training_sceneids_38-Cloud.csv
├── 38-Cloud_test
│ ├── test_red
│ ├── test_green
│ ├── test_blue
│ ├── test_nir
│ ├── Natural_False_Color
│ ├── Entire_scene_gts
│ ├── test_patches_38-Cloud.csv
│ ├── test_sceneids_38-Cloud.csv
python tools/train_cloud38.py
python tools/test_cloud38.py
python tools/evaluate.py