forked from abides-sim/abides
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rmsc01.py
executable file
·264 lines (227 loc) · 11.6 KB
/
rmsc01.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# RMSC-1 (Reference Market Simulation Configuration):
# - 1 Exchange Agent
# - 1 Market Maker Agent
# - 50 ZI Agent
# - 25 HBL Agent
# - 24 Momentum Agent
import argparse
import numpy as np
import pandas as pd
import sys
import datetime as dt
import importlib
from Kernel import Kernel
from util import util
from util.order import LimitOrder
from util.oracle.SparseMeanRevertingOracle import SparseMeanRevertingOracle
from model.LatencyModel import LatencyModel
from agent.ExchangeAgent import ExchangeAgent
from agent.market_makers.MarketMakerAgent import MarketMakerAgent
from agent.examples.MomentumAgent import MomentumAgent
from agent.ZeroIntelligenceAgent import ZeroIntelligenceAgent
from agent.HeuristicBeliefLearningAgent import HeuristicBeliefLearningAgent
########################################################################################################################
############################################### GENERAL CONFIG #########################################################
parser = argparse.ArgumentParser(
description='Detailed options for RMSC-1 (Reference Market Simulation Configuration) config.')
parser.add_argument('-c',
'--config',
required=True,
help='Name of config file to execute')
parser.add_argument('-l',
'--log_dir',
default=None,
help='Log directory name (default: unix timestamp at program start)')
parser.add_argument('-s',
'--seed',
type=int,
default=None,
help='numpy.random.seed() for simulation')
parser.add_argument('-v',
'--verbose',
action='store_true',
help='Maximum verbosity!')
parser.add_argument('--config_help',
action='store_true',
help='Print argument options for this config file')
parser.add_argument('-a',
'--agent_name',
default=None,
help='Specify the agent to test with')
args, remaining_args = parser.parse_known_args()
if args.config_help:
parser.print_help()
sys.exit()
log_dir = args.log_dir # Requested log directory.
seed = args.seed # Random seed specification on the command line.
if not seed: seed = int(pd.Timestamp.now().timestamp() * 1000000) % (2 ** 32 - 1)
np.random.seed(seed)
util.silent_mode = not args.verbose
LimitOrder.silent_mode = not args.verbose
simulation_start_time = dt.datetime.now()
print("Simulation Start Time: {}".format(simulation_start_time))
print("Configuration seed: {}\n".format(seed))
########################################################################################################################
############################################### AGENTS CONFIG ##########################################################
# Historical date to simulate.
historical_date = pd.to_datetime('2019-06-28')
symbol = 'JPM'
agent_count, agents, agent_types = 0, [], []
starting_cash = 10000000 # Cash in this simulator is always in CENTS.
# 1) 1 Exchange Agent
mkt_open = historical_date + pd.to_timedelta('09:30:00')
mkt_close = historical_date + pd.to_timedelta('16:00:00')
agents.extend([ExchangeAgent(id=0,
name="EXCHANGE_AGENT",
type="ExchangeAgent",
mkt_open=mkt_open,
mkt_close=mkt_close,
symbols=[symbol],
log_orders=False,
pipeline_delay=0,
computation_delay=0,
stream_history=10,
book_freq=0,
random_state=np.random.RandomState(seed=np.random.randint(low=0, high=2 ** 32,
dtype='uint64')))])
agent_types.extend("ExchangeAgent")
agent_count += 1
# 2) 1 Market Maker Agent
num_mm_agents = 1
agents.extend([MarketMakerAgent(id=j,
name="MARKET_MAKER_AGENT_{}".format(j),
type='MarketMakerAgent',
symbol=symbol,
starting_cash=starting_cash,
min_size=500,
max_size=1000,
log_orders=False,
random_state=np.random.RandomState(seed=np.random.randint(low=0, high=2 ** 32,
dtype='uint64')))
for j in range(agent_count, agent_count + num_mm_agents)])
agent_types.extend('MarketMakerAgent')
agent_count += num_mm_agents
# 3) 50 Zero Intelligence Agents
symbols = {symbol: {'r_bar': 1e5,
'kappa': 1.67e-12,
'agent_kappa': 1.67e-15,
'sigma_s': 0,
'fund_vol': 1e-8,
'megashock_lambda_a': 2.77778e-13,
'megashock_mean': 1e3,
'megashock_var': 5e4,
'random_state': np.random.RandomState(seed=np.random.randint(low=0, high=2 ** 32,
dtype='uint64'))}}
oracle = SparseMeanRevertingOracle(mkt_open, mkt_close, symbols)
num_zi_agents = 50
agents.extend([ZeroIntelligenceAgent(id=j,
name="ZI_AGENT_{}".format(j),
type="ZeroIntelligenceAgent",
symbol=symbol,
starting_cash=starting_cash,
sigma_n=10000,
sigma_s=symbols[symbol]['fund_vol'],
kappa=symbols[symbol]['agent_kappa'],
r_bar=symbols[symbol]['r_bar'],
q_max=10,
sigma_pv=5e4,
R_min=0,
R_max=100,
eta=1,
lambda_a=1e-12,
log_orders=False,
random_state=np.random.RandomState(seed=np.random.randint(low=0, high=2 ** 32,
dtype='uint64')))
for j in range(agent_count, agent_count + num_zi_agents)])
agent_types.extend("ZeroIntelligenceAgent")
agent_count += num_zi_agents
# 4) 25 Heuristic Belief Learning Agents
num_hbl_agents = 25
agents.extend([HeuristicBeliefLearningAgent(id=j,
name="HBL_AGENT_{}".format(j),
type="HeuristicBeliefLearningAgent",
symbol=symbol,
starting_cash=starting_cash,
sigma_n=10000,
sigma_s=symbols[symbol]['fund_vol'],
kappa=symbols[symbol]['agent_kappa'],
r_bar=symbols[symbol]['r_bar'],
q_max=10,
sigma_pv=5e4,
R_min=0,
R_max=100,
eta=1,
lambda_a=1e-12,
L=2,
log_orders=False,
random_state=np.random.RandomState(seed=np.random.randint(low=0, high=2 ** 32,
dtype='uint64')))
for j in range(agent_count, agent_count + num_hbl_agents)])
agent_types.extend("HeuristicBeliefLearningAgent")
agent_count += num_hbl_agents
# 5) 24 Momentum Agents:
num_momentum_agents = 24
agents.extend([MomentumAgent(id=j,
name="MOMENTUM_AGENT_{}".format(j),
type="MomentumAgent",
symbol=symbol,
starting_cash=starting_cash,
min_size=1,
max_size=10,
log_orders=False,
random_state=np.random.RandomState(seed=np.random.randint(low=0, high=2 ** 32,
dtype='uint64')))
for j in range(agent_count, agent_count + num_momentum_agents)])
agent_types.extend("MomentumAgent")
agent_count += num_momentum_agents
# 6) User defined agent
# Load the agent to evaluate against the market
if args.agent_name:
mod_name = args.agent_name.rsplit('.', 1)[0]
class_name = args.agent_name.split('.')[-1]
m = importlib.import_module(args.agent_name, package=None)
testagent = getattr(m, class_name)
agents.extend([testagent(id=agent_count,
name=args.agent_name,
type="AgentUnderTest",
symbol=symbol,
starting_cash=starting_cash,
min_size=1,
max_size=10,
log_orders=False,
random_state=np.random.RandomState(seed=np.random.randint(low=0,high=2**32,dtype='uint64')))])
agent_count += 1
########################################################################################################################
########################################### KERNEL AND OTHER CONFIG ####################################################
kernel = Kernel("RMSC01 Kernel", random_state=np.random.RandomState(seed=np.random.randint(low=0, high=2 ** 32,
dtype='uint64')))
kernelStartTime = historical_date
kernelStopTime = mkt_close + pd.to_timedelta('00:01:00')
defaultComputationDelay = 50 # 50 nanoseconds
# LATENCY
latency_rstate = np.random.RandomState(seed=np.random.randint(low=0, high=2**32))
pairwise = (agent_count, agent_count)
# All agents sit on line from Seattle to NYC
nyc_to_seattle_meters = 3866660
pairwise_distances = util.generate_uniform_random_pairwise_dist_on_line(0.0, nyc_to_seattle_meters, agent_count,
random_state=latency_rstate)
pairwise_latencies = util.meters_to_light_ns(pairwise_distances)
model_args = {
'connected': True,
'min_latency': pairwise_latencies
}
latency_model = LatencyModel(latency_model='deterministic',
random_state=latency_rstate,
kwargs=model_args
)
# KERNEL
kernel.runner(agents=agents,
startTime=kernelStartTime,
stopTime=kernelStopTime,
agentLatencyModel=latency_model,
defaultComputationDelay=defaultComputationDelay,
oracle=oracle,
log_dir=args.log_dir)
simulation_end_time = dt.datetime.now()
print("Simulation End Time: {}".format(simulation_end_time))
print("Time taken to run simulation: {}".format(simulation_end_time - simulation_start_time))