forked from RobotLocomotion/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbspline_basis_test.cc
347 lines (306 loc) · 15.7 KB
/
bspline_basis_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
#include "drake/math/bspline_basis.h"
#include <algorithm>
#include <functional>
#include <gtest/gtest.h>
#include "drake/common/default_scalars.h"
#include "drake/common/extract_double.h"
#include "drake/common/test_utilities/expect_throws_message.h"
#include "drake/common/yaml/yaml_io.h"
namespace drake {
namespace math {
using symbolic::Expression;
using yaml::LoadYamlString;
template <typename T>
class BsplineBasisTests : public ::testing::Test {};
using DefaultScalars = ::testing::Types<double, AutoDiffXd, Expression>;
TYPED_TEST_SUITE(BsplineBasisTests, DefaultScalars);
// Verifies that the constructors work as expected.
TYPED_TEST(BsplineBasisTests, ConstructorTest) {
using T = TypeParam;
const int order = 4;
const int num_basis_functions = 11;
const std::vector<T> clamped_uniform_0_to_1{
0, 0, 0, 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1, 1, 1, 1};
const std::vector<T> uniform_0_to_1{-0.375, -0.25, -0.125, 0, 0.125,
0.25, 0.375, 0.5, 0.625, 0.75,
0.875, 1, 1.125, 1.25, 1.375};
const std::vector<T> clamped_uniform_1_to_9{1, 1, 1, 1, 2, 3, 4, 5,
6, 7, 8, 9, 9, 9, 9};
auto check_basis = [](const BsplineBasis<T>& basis, int expected_order,
int expected_num_basis_functions,
const std::vector<T>& expected_knots) {
EXPECT_EQ(basis.order(), expected_order);
EXPECT_EQ(basis.num_basis_functions(), expected_num_basis_functions);
// Checks basics.knots() == expected_knots.
//
// Note: When T = symbolic::Expression, (knot1 == knot2) forms a
// symbolic::Formula in which we do not define implicit conversion to bool.
// As a result, `basics.knots() == expected_knots` causes a compilation
// error. We use std::equal and explicitly pass a binary predicate which
// uses std::equal_to<T> instead.
EXPECT_TRUE(std::equal(basis.knots().begin(), basis.knots().end(),
expected_knots.begin(), expected_knots.end(),
[](const auto& knot1, const auto& knot2) {
return std::equal_to<T>{}(knot1, knot2);
}));
};
// Check the order and num_basis_functions constructor with kClampedUniform.
check_basis(BsplineBasis<T>(order, num_basis_functions,
KnotVectorType::kClampedUniform,
0 /* initial_parameter_value */,
1 /* final_parameter_value */),
order, num_basis_functions, clamped_uniform_0_to_1);
check_basis(BsplineBasis<T>(order, num_basis_functions,
KnotVectorType::kClampedUniform,
1 /* initial_parameter_value */,
9 /* final_parameter_value */),
order, num_basis_functions, clamped_uniform_1_to_9);
// Check that the order and num_basis_functions constructor defaults to
// kClampedUniform from 0 to 1.
EXPECT_EQ(BsplineBasis<T>(order, num_basis_functions),
BsplineBasis<T>(order, num_basis_functions,
KnotVectorType::kClampedUniform,
0 /* initial_parameter_value */,
1 /* final_parameter_value */));
// Check the order and num_basis_functions constructor with kUniform.
check_basis(
BsplineBasis<T>(order, num_basis_functions, KnotVectorType::kUniform),
order, num_basis_functions, uniform_0_to_1);
// Check the order and knots constructor.
const std::vector<T> arbitrary_knots = {-5, 0, 0.1, 0.2, 0.3, 0.4, 3, 10,
17, 25, 50, 100, 200, 400, 401};
check_basis(BsplineBasis<T>(order, arbitrary_knots), order,
num_basis_functions, arbitrary_knots);
}
// Verifies that we can convert a BsplineBasis<double> to a BsplineBasis<T>.
TYPED_TEST(BsplineBasisTests, ConstructFromDoubleTest) {
using T = TypeParam;
const int order = 4;
const int num_basis_functions = 11;
BsplineBasis<double> basis_double{order, num_basis_functions};
EXPECT_EQ(BsplineBasis<T>(basis_double),
BsplineBasis<T>(order, num_basis_functions));
}
TYPED_TEST(BsplineBasisTests, ConstructorErrors) {
using T = TypeParam;
const int order = 4;
const char* expected_message_0 =
"The number of basis functions (.*) should be greater than or equal to "
"the order (.*).";
DRAKE_EXPECT_THROWS_MESSAGE(BsplineBasis<double>(order, 3),
expected_message_0);
const char* expected_message_1 =
"The number of knots (.*) should be greater than or equal to twice the "
"order (.*).";
DRAKE_EXPECT_THROWS_MESSAGE(BsplineBasis<T>(order, {0, 1, 2, 3, 4, 5, 6}),
expected_message_1);
}
// Verifies that ComputeActiveBasisFunctionIndices() returns the correct values
// for selected inputs.
TYPED_TEST(BsplineBasisTests, ComputeActiveBasisFunctionIndicesTest) {
using T = TypeParam;
/* For a 5-th order B-spline basis with 14 basis functions (k = 5, n = 13),
the clamped, uniform knot vector from 0 to 1 is
[0, 0, 0, 0, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1, 1, 1, 1].
For i = {0, ..., 9}, t ∈ [0.1 * i, 0.1 * (i + 1)) implies that the k basis
functions with indices {i, ..., i + k - 1} are active (potentially non-zero)
while all other basis functions are in-active (definitely zero). */
const int expected_order = 5;
const int expected_num_basis_functions = 14;
BsplineBasis<T> bspline_basis_0{expected_order, expected_num_basis_functions};
auto expected_indices = [](std::initializer_list<int> values) {
return std::vector<int>(values);
};
// Test that the active basis functions for the full final interval are the
// last five (and only the last five).
EXPECT_EQ(bspline_basis_0.ComputeActiveBasisFunctionIndices({{0.9, 1.0}}),
expected_indices({9, 10, 11, 12, 13}));
// Test that the active basis functions for part of the final interval are
// the last five (and only the last five).
EXPECT_EQ(bspline_basis_0.ComputeActiveBasisFunctionIndices({{0.95, 1.0}}),
expected_indices({9, 10, 11, 12, 13}));
// Test that extending the query interval back into the previous knot interval
// adds 8 to the list of active basis function indices.
EXPECT_EQ(bspline_basis_0.ComputeActiveBasisFunctionIndices({{0.85, 1.0}}),
expected_indices({8, 9, 10, 11, 12, 13}));
// Test an query interval that extends across three knot intervals.
EXPECT_EQ(bspline_basis_0.ComputeActiveBasisFunctionIndices({{0.35, 0.59}}),
expected_indices({3, 4, 5, 6, 7, 8, 9}));
// Test that the first five basis functions are active when
// t = initial_parameter_value().
EXPECT_EQ(bspline_basis_0.ComputeActiveBasisFunctionIndices(0.0),
expected_indices({0, 1, 2, 3, 4}));
// Test an intermediate point, t = 0.43 ∈ (0.1 * i, 0.1 * (i + 1)), for i = 4.
EXPECT_EQ(bspline_basis_0.ComputeActiveBasisFunctionIndices(0.43),
expected_indices({4, 5, 6, 7, 8}));
// Test that the last five basis functions are active when
// t = final_parameter_value().
EXPECT_EQ(bspline_basis_0.ComputeActiveBasisFunctionIndices(1.0),
expected_indices({9, 10, 11, 12, 13}));
BsplineBasis<double> bspline_basis_1{1, expected_num_basis_functions};
// Test that the for a 1-st order basis, only the first basis function is
// active when t = initial_parameter_value().
EXPECT_EQ(bspline_basis_1.ComputeActiveBasisFunctionIndices(0),
expected_indices({0}));
}
/* Compares values returned by BsplineBasis::EvaluateBasisFunctionI() to those
generated by scipy.interpolate.Bspline.basis_element():
import numpy as np
from scipy.interpolate import BSpline
knots = [0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1]
order = 4
num_basis_functions = len(knots) - order
for i in range(0, num_basis_functions):
bspline = BSpline.basis_element(knots[i:(i+order+1)],
extrapolate=False)
u = np.union1d(np.linspace(bspline.t[order - 1],
bspline.t[-order],
num_basis_functions),
knots)
print("parameter_values.push_back(std::vector<T>{{{}}});"
.format(", ".join("{:.17f}".format(n) for n in u)))
print("expected_basis_function_values.push_back" +
"(std::vector<T>{{{}}});"
.format(", ".join("{:.17f}".format(0.0 if np.isnan(n) else n)
for n in bspline(u))))
NOTE(avalenzu): Scipy gives B[6](1.0) = 0.0, which is wrong. That value has
been replaced with the correct one (1.0).
This tests (indirectly) the BsplineBasis::EvaluateCurve() method. */
TYPED_TEST(BsplineBasisTests, EvaluateBasisFunctionIScipyComparison) {
using T = TypeParam;
const int order = 4;
const int num_basis_functions = 7;
BsplineBasis<T> basis{order, num_basis_functions};
std::vector<std::vector<T>> parameter_values{};
std::vector<std::vector<T>> expected_basis_function_values{};
parameter_values.push_back(std::vector<T>{
0.00000000000000000, 0.04166666666666666, 0.08333333333333333,
0.12500000000000000, 0.16666666666666666, 0.20833333333333331,
0.25000000000000000, 0.50000000000000000, 0.75000000000000000,
1.00000000000000000});
expected_basis_function_values.push_back(std::vector<T>{
1.00000000000000000, 0.57870370370370383, 0.29629629629629639,
0.12500000000000000, 0.03703703703703705, 0.00462962962962964,
0.00000000000000000, 0.00000000000000000, 0.00000000000000000,
0.00000000000000000});
parameter_values.push_back(std::vector<T>{
0.00000000000000000, 0.08333333333333333, 0.16666666666666666,
0.25000000000000000, 0.33333333333333331, 0.41666666666666663,
0.50000000000000000, 0.75000000000000000, 1.00000000000000000});
expected_basis_function_values.push_back(std::vector<T>{
0.00000000000000000, 0.56481481481481488, 0.51851851851851860,
0.25000000000000000, 0.07407407407407410, 0.00925925925925927,
0.00000000000000000, 0.00000000000000000, 0.00000000000000000});
parameter_values.push_back(std::vector<T>{
0.00000000000000000, 0.12500000000000000, 0.25000000000000000,
0.37500000000000000, 0.50000000000000000, 0.62500000000000000,
0.75000000000000000, 1.00000000000000000});
expected_basis_function_values.push_back(std::vector<T>{
0.00000000000000000, 0.26041666666666663, 0.58333333333333326,
0.46875000000000000, 0.16666666666666666, 0.02083333333333333,
0.00000000000000000, 0.00000000000000000});
parameter_values.push_back(std::vector<T>{
0.00000000000000000, 0.16666666666666666, 0.25000000000000000,
0.33333333333333331, 0.50000000000000000, 0.66666666666666663,
0.75000000000000000, 0.83333333333333326, 1.00000000000000000});
expected_basis_function_values.push_back(std::vector<T>{
0.00000000000000000, 0.04938271604938271, 0.16666666666666666,
0.37037037037037035, 0.66666666666666663, 0.37037037037037052,
0.16666666666666666, 0.04938271604938278, 0.00000000000000000});
parameter_values.push_back(std::vector<T>{
0.00000000000000000, 0.25000000000000000, 0.37500000000000000,
0.50000000000000000, 0.62500000000000000, 0.75000000000000000,
0.87500000000000000, 1.00000000000000000});
expected_basis_function_values.push_back(std::vector<T>{
0.00000000000000000, 0.00000000000000000, 0.02083333333333333,
0.16666666666666666, 0.46875000000000000, 0.58333333333333326,
0.26041666666666663, 0.00000000000000000});
parameter_values.push_back(std::vector<T>{
0.00000000000000000, 0.25000000000000000, 0.50000000000000000,
0.58333333333333337, 0.66666666666666663, 0.75000000000000000,
0.83333333333333326, 0.91666666666666663, 1.00000000000000000});
expected_basis_function_values.push_back(std::vector<T>{
0.00000000000000000, 0.00000000000000000, 0.00000000000000000,
0.00925925925925927, 0.07407407407407403, 0.25000000000000000,
0.51851851851851827, 0.56481481481481488, 0.00000000000000000});
parameter_values.push_back(std::vector<T>{
0.00000000000000000, 0.25000000000000000, 0.50000000000000000,
0.75000000000000000, 0.79166666666666663, 0.83333333333333337,
0.87500000000000000, 0.91666666666666663, 0.95833333333333326,
1.00000000000000000});
expected_basis_function_values.push_back(std::vector<T>{
0.00000000000000000, 0.00000000000000000, 0.00000000000000000,
0.00000000000000000, 0.00462962962962962, 0.03703703703703709,
0.12500000000000000, 0.29629629629629611, 0.57870370370370305,
1.00000000000000000});
ASSERT_EQ(static_cast<int>(parameter_values.size()), num_basis_functions);
ASSERT_EQ(static_cast<int>(expected_basis_function_values.size()),
num_basis_functions);
for (int i = 0; i < num_basis_functions; ++i) {
const int num_parameter_values =
static_cast<int>(parameter_values[i].size());
ASSERT_EQ(static_cast<int>(expected_basis_function_values[i].size()),
num_parameter_values);
for (int j = 0; j < num_parameter_values; ++j) {
EXPECT_NEAR(ExtractDoubleOrThrow(
basis.EvaluateBasisFunctionI(i, parameter_values[i][j])),
ExtractDoubleOrThrow(expected_basis_function_values[i][j]),
std::numeric_limits<double>::epsilon());
}
}
}
// Tests that {initial,final}_parameter_value() behave as expected.
TYPED_TEST(BsplineBasisTests, InitialAndFinalParameterValueTest) {
using T = TypeParam;
const int order{3};
const std::vector<T> knots{-5, 0, 0.1, 0.2, 0.3, 0.4, 3, 10, 17, 25};
BsplineBasis<T> bspline_basis{order, knots};
EXPECT_EQ(bspline_basis.initial_parameter_value(), knots[order - 1]);
EXPECT_EQ(bspline_basis.final_parameter_value(), knots[knots.size() - order]);
}
// Tests that operator==() behaves as expected.
TYPED_TEST(BsplineBasisTests, OperatorEqualsTest) {
using T = TypeParam;
const int order{3};
const std::vector<T> knots{-5, 0, 0.1, 0.2, 0.3, 0.4, 3, 10, 17, 25};
// Test that identically constructed objects are equal.
EXPECT_EQ(BsplineBasis<T>(order, knots), BsplineBasis<T>(order, knots));
// Test that objects with different orders and the same knots are not equal.
EXPECT_NE(BsplineBasis<T>(order, knots), BsplineBasis<T>(order + 1, knots));
// Test that objects with the same orders and different knots are not equal.
const std::vector<T> other_knots{1, 2, 3, 4, 5, 6, 7, 8};
EXPECT_NE(BsplineBasis<T>(order, knots), BsplineBasis<T>(order, other_knots));
// Test that objects with different orders and different knots are not equal.
EXPECT_NE(BsplineBasis<T>(order, knots),
BsplineBasis<T>(order + 1, other_knots));
}
const char* const good = R"""(
order: 3
knots: [0., 1., 1.5, 1.6, 2., 2.5, 3.]
)""";
GTEST_TEST(BsplineBasisSerializeTests, GoodTest) {
const int kOrder{3};
const std::vector<double> knots{0., 1., 1.5, 1.6, 2., 2.5, 3.};
const auto dut = LoadYamlString<BsplineBasis<double>>(good);
EXPECT_EQ(dut, BsplineBasis<double>(kOrder, knots));
}
const char* const not_enough_knots = R"""(
order: 3
knots: [0., 1., 1.5, 1.6, 2.]
)""";
GTEST_TEST(BsplineBasisSerializeTests, NotEnoughKnotsTest) {
DRAKE_EXPECT_THROWS_MESSAGE(
LoadYamlString<BsplineBasis<double>>(not_enough_knots),
".*CheckInvariants.*");
}
const char* const unsorted_knots = R"""(
order: 3
knots: [0., 2.5, 1., 1.5, 1.6, 2., 3.]
)""";
GTEST_TEST(BsplineBasisSerializeTests, UnsortedKnotsTest) {
DRAKE_EXPECT_THROWS_MESSAGE(
LoadYamlString<BsplineBasis<double>>(unsorted_knots),
".*CheckInvariants.*");
}
} // namespace math
} // namespace drake