forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
futex.c
2884 lines (2534 loc) · 75.9 KB
/
futex.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Fast Userspace Mutexes (which I call "Futexes!").
* (C) Rusty Russell, IBM 2002
*
* Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
* (C) Copyright 2003 Red Hat Inc, All Rights Reserved
*
* Removed page pinning, fix privately mapped COW pages and other cleanups
* (C) Copyright 2003, 2004 Jamie Lokier
*
* Robust futex support started by Ingo Molnar
* (C) Copyright 2006 Red Hat Inc, All Rights Reserved
* Thanks to Thomas Gleixner for suggestions, analysis and fixes.
*
* PI-futex support started by Ingo Molnar and Thomas Gleixner
* Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <[email protected]>
* Copyright (C) 2006 Timesys Corp., Thomas Gleixner <[email protected]>
*
* PRIVATE futexes by Eric Dumazet
* Copyright (C) 2007 Eric Dumazet <[email protected]>
*
* Requeue-PI support by Darren Hart <[email protected]>
* Copyright (C) IBM Corporation, 2009
* Thanks to Thomas Gleixner for conceptual design and careful reviews.
*
* Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
* enough at me, Linus for the original (flawed) idea, Matthew
* Kirkwood for proof-of-concept implementation.
*
* "The futexes are also cursed."
* "But they come in a choice of three flavours!"
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
#include <linux/signal.h>
#include <linux/export.h>
#include <linux/magic.h>
#include <linux/pid.h>
#include <linux/nsproxy.h>
#include <linux/ptrace.h>
#include <linux/sched/rt.h>
#include <linux/hugetlb.h>
#include <linux/freezer.h>
#include <linux/bootmem.h>
#include <asm/futex.h>
#include "locking/rtmutex_common.h"
/*
* Basic futex operation and ordering guarantees:
*
* The waiter reads the futex value in user space and calls
* futex_wait(). This function computes the hash bucket and acquires
* the hash bucket lock. After that it reads the futex user space value
* again and verifies that the data has not changed. If it has not changed
* it enqueues itself into the hash bucket, releases the hash bucket lock
* and schedules.
*
* The waker side modifies the user space value of the futex and calls
* futex_wake(). This function computes the hash bucket and acquires the
* hash bucket lock. Then it looks for waiters on that futex in the hash
* bucket and wakes them.
*
* In futex wake up scenarios where no tasks are blocked on a futex, taking
* the hb spinlock can be avoided and simply return. In order for this
* optimization to work, ordering guarantees must exist so that the waiter
* being added to the list is acknowledged when the list is concurrently being
* checked by the waker, avoiding scenarios like the following:
*
* CPU 0 CPU 1
* val = *futex;
* sys_futex(WAIT, futex, val);
* futex_wait(futex, val);
* uval = *futex;
* *futex = newval;
* sys_futex(WAKE, futex);
* futex_wake(futex);
* if (queue_empty())
* return;
* if (uval == val)
* lock(hash_bucket(futex));
* queue();
* unlock(hash_bucket(futex));
* schedule();
*
* This would cause the waiter on CPU 0 to wait forever because it
* missed the transition of the user space value from val to newval
* and the waker did not find the waiter in the hash bucket queue.
*
* The correct serialization ensures that a waiter either observes
* the changed user space value before blocking or is woken by a
* concurrent waker:
*
* CPU 0 CPU 1
* val = *futex;
* sys_futex(WAIT, futex, val);
* futex_wait(futex, val);
*
* waiters++;
* mb(); (A) <-- paired with -.
* |
* lock(hash_bucket(futex)); |
* |
* uval = *futex; |
* | *futex = newval;
* | sys_futex(WAKE, futex);
* | futex_wake(futex);
* |
* `-------> mb(); (B)
* if (uval == val)
* queue();
* unlock(hash_bucket(futex));
* schedule(); if (waiters)
* lock(hash_bucket(futex));
* wake_waiters(futex);
* unlock(hash_bucket(futex));
*
* Where (A) orders the waiters increment and the futex value read -- this
* is guaranteed by the head counter in the hb spinlock; and where (B)
* orders the write to futex and the waiters read -- this is done by the
* barriers in get_futex_key_refs(), through either ihold or atomic_inc,
* depending on the futex type.
*
* This yields the following case (where X:=waiters, Y:=futex):
*
* X = Y = 0
*
* w[X]=1 w[Y]=1
* MB MB
* r[Y]=y r[X]=x
*
* Which guarantees that x==0 && y==0 is impossible; which translates back into
* the guarantee that we cannot both miss the futex variable change and the
* enqueue.
*/
int __read_mostly futex_cmpxchg_enabled;
/*
* Futex flags used to encode options to functions and preserve them across
* restarts.
*/
#define FLAGS_SHARED 0x01
#define FLAGS_CLOCKRT 0x02
#define FLAGS_HAS_TIMEOUT 0x04
/*
* Priority Inheritance state:
*/
struct futex_pi_state {
/*
* list of 'owned' pi_state instances - these have to be
* cleaned up in do_exit() if the task exits prematurely:
*/
struct list_head list;
/*
* The PI object:
*/
struct rt_mutex pi_mutex;
struct task_struct *owner;
atomic_t refcount;
union futex_key key;
};
/**
* struct futex_q - The hashed futex queue entry, one per waiting task
* @list: priority-sorted list of tasks waiting on this futex
* @task: the task waiting on the futex
* @lock_ptr: the hash bucket lock
* @key: the key the futex is hashed on
* @pi_state: optional priority inheritance state
* @rt_waiter: rt_waiter storage for use with requeue_pi
* @requeue_pi_key: the requeue_pi target futex key
* @bitset: bitset for the optional bitmasked wakeup
*
* We use this hashed waitqueue, instead of a normal wait_queue_t, so
* we can wake only the relevant ones (hashed queues may be shared).
*
* A futex_q has a woken state, just like tasks have TASK_RUNNING.
* It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
* The order of wakeup is always to make the first condition true, then
* the second.
*
* PI futexes are typically woken before they are removed from the hash list via
* the rt_mutex code. See unqueue_me_pi().
*/
struct futex_q {
struct plist_node list;
struct task_struct *task;
spinlock_t *lock_ptr;
union futex_key key;
struct futex_pi_state *pi_state;
struct rt_mutex_waiter *rt_waiter;
union futex_key *requeue_pi_key;
u32 bitset;
};
static const struct futex_q futex_q_init = {
/* list gets initialized in queue_me()*/
.key = FUTEX_KEY_INIT,
.bitset = FUTEX_BITSET_MATCH_ANY
};
/*
* Hash buckets are shared by all the futex_keys that hash to the same
* location. Each key may have multiple futex_q structures, one for each task
* waiting on a futex.
*/
struct futex_hash_bucket {
spinlock_t lock;
struct plist_head chain;
} ____cacheline_aligned_in_smp;
static unsigned long __read_mostly futex_hashsize;
static struct futex_hash_bucket *futex_queues;
static inline void futex_get_mm(union futex_key *key)
{
atomic_inc(&key->private.mm->mm_count);
/*
* Ensure futex_get_mm() implies a full barrier such that
* get_futex_key() implies a full barrier. This is relied upon
* as full barrier (B), see the ordering comment above.
*/
smp_mb__after_atomic_inc();
}
static inline bool hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
/*
* Tasks trying to enter the critical region are most likely
* potential waiters that will be added to the plist. Ensure
* that wakers won't miss to-be-slept tasks in the window between
* the wait call and the actual plist_add.
*/
if (spin_is_locked(&hb->lock))
return true;
smp_rmb(); /* Make sure we check the lock state first */
return !plist_head_empty(&hb->chain);
#else
return true;
#endif
}
/*
* We hash on the keys returned from get_futex_key (see below).
*/
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
u32 hash = jhash2((u32*)&key->both.word,
(sizeof(key->both.word)+sizeof(key->both.ptr))/4,
key->both.offset);
return &futex_queues[hash & (futex_hashsize - 1)];
}
/*
* Return 1 if two futex_keys are equal, 0 otherwise.
*/
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
return (key1 && key2
&& key1->both.word == key2->both.word
&& key1->both.ptr == key2->both.ptr
&& key1->both.offset == key2->both.offset);
}
/*
* Take a reference to the resource addressed by a key.
* Can be called while holding spinlocks.
*
*/
static void get_futex_key_refs(union futex_key *key)
{
if (!key->both.ptr)
return;
switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
case FUT_OFF_INODE:
ihold(key->shared.inode); /* implies MB (B) */
break;
case FUT_OFF_MMSHARED:
futex_get_mm(key); /* implies MB (B) */
break;
}
}
/*
* Drop a reference to the resource addressed by a key.
* The hash bucket spinlock must not be held.
*/
static void drop_futex_key_refs(union futex_key *key)
{
if (!key->both.ptr) {
/* If we're here then we tried to put a key we failed to get */
WARN_ON_ONCE(1);
return;
}
switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
case FUT_OFF_INODE:
iput(key->shared.inode);
break;
case FUT_OFF_MMSHARED:
mmdrop(key->private.mm);
break;
}
}
/**
* get_futex_key() - Get parameters which are the keys for a futex
* @uaddr: virtual address of the futex
* @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
* @key: address where result is stored.
* @rw: mapping needs to be read/write (values: VERIFY_READ,
* VERIFY_WRITE)
*
* Return: a negative error code or 0
*
* The key words are stored in *key on success.
*
* For shared mappings, it's (page->index, file_inode(vma->vm_file),
* offset_within_page). For private mappings, it's (uaddr, current->mm).
* We can usually work out the index without swapping in the page.
*
* lock_page() might sleep, the caller should not hold a spinlock.
*/
static int
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
{
unsigned long address = (unsigned long)uaddr;
struct mm_struct *mm = current->mm;
struct page *page, *page_head;
int err, ro = 0;
/*
* The futex address must be "naturally" aligned.
*/
key->both.offset = address % PAGE_SIZE;
if (unlikely((address % sizeof(u32)) != 0))
return -EINVAL;
address -= key->both.offset;
if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
return -EFAULT;
/*
* PROCESS_PRIVATE futexes are fast.
* As the mm cannot disappear under us and the 'key' only needs
* virtual address, we dont even have to find the underlying vma.
* Note : We do have to check 'uaddr' is a valid user address,
* but access_ok() should be faster than find_vma()
*/
if (!fshared) {
key->private.mm = mm;
key->private.address = address;
get_futex_key_refs(key); /* implies MB (B) */
return 0;
}
again:
err = get_user_pages_fast(address, 1, 1, &page);
/*
* If write access is not required (eg. FUTEX_WAIT), try
* and get read-only access.
*/
if (err == -EFAULT && rw == VERIFY_READ) {
err = get_user_pages_fast(address, 1, 0, &page);
ro = 1;
}
if (err < 0)
return err;
else
err = 0;
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
page_head = page;
if (unlikely(PageTail(page))) {
put_page(page);
/* serialize against __split_huge_page_splitting() */
local_irq_disable();
if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
page_head = compound_head(page);
/*
* page_head is valid pointer but we must pin
* it before taking the PG_lock and/or
* PG_compound_lock. The moment we re-enable
* irqs __split_huge_page_splitting() can
* return and the head page can be freed from
* under us. We can't take the PG_lock and/or
* PG_compound_lock on a page that could be
* freed from under us.
*/
if (page != page_head) {
get_page(page_head);
put_page(page);
}
local_irq_enable();
} else {
local_irq_enable();
goto again;
}
}
#else
page_head = compound_head(page);
if (page != page_head) {
get_page(page_head);
put_page(page);
}
#endif
lock_page(page_head);
/*
* If page_head->mapping is NULL, then it cannot be a PageAnon
* page; but it might be the ZERO_PAGE or in the gate area or
* in a special mapping (all cases which we are happy to fail);
* or it may have been a good file page when get_user_pages_fast
* found it, but truncated or holepunched or subjected to
* invalidate_complete_page2 before we got the page lock (also
* cases which we are happy to fail). And we hold a reference,
* so refcount care in invalidate_complete_page's remove_mapping
* prevents drop_caches from setting mapping to NULL beneath us.
*
* The case we do have to guard against is when memory pressure made
* shmem_writepage move it from filecache to swapcache beneath us:
* an unlikely race, but we do need to retry for page_head->mapping.
*/
if (!page_head->mapping) {
int shmem_swizzled = PageSwapCache(page_head);
unlock_page(page_head);
put_page(page_head);
if (shmem_swizzled)
goto again;
return -EFAULT;
}
/*
* Private mappings are handled in a simple way.
*
* NOTE: When userspace waits on a MAP_SHARED mapping, even if
* it's a read-only handle, it's expected that futexes attach to
* the object not the particular process.
*/
if (PageAnon(page_head)) {
/*
* A RO anonymous page will never change and thus doesn't make
* sense for futex operations.
*/
if (ro) {
err = -EFAULT;
goto out;
}
key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
key->private.mm = mm;
key->private.address = address;
} else {
key->both.offset |= FUT_OFF_INODE; /* inode-based key */
key->shared.inode = page_head->mapping->host;
key->shared.pgoff = basepage_index(page);
}
get_futex_key_refs(key); /* implies MB (B) */
out:
unlock_page(page_head);
put_page(page_head);
return err;
}
static inline void put_futex_key(union futex_key *key)
{
drop_futex_key_refs(key);
}
/**
* fault_in_user_writeable() - Fault in user address and verify RW access
* @uaddr: pointer to faulting user space address
*
* Slow path to fixup the fault we just took in the atomic write
* access to @uaddr.
*
* We have no generic implementation of a non-destructive write to the
* user address. We know that we faulted in the atomic pagefault
* disabled section so we can as well avoid the #PF overhead by
* calling get_user_pages() right away.
*/
static int fault_in_user_writeable(u32 __user *uaddr)
{
struct mm_struct *mm = current->mm;
int ret;
down_read(&mm->mmap_sem);
ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
FAULT_FLAG_WRITE);
up_read(&mm->mmap_sem);
return ret < 0 ? ret : 0;
}
/**
* futex_top_waiter() - Return the highest priority waiter on a futex
* @hb: the hash bucket the futex_q's reside in
* @key: the futex key (to distinguish it from other futex futex_q's)
*
* Must be called with the hb lock held.
*/
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
union futex_key *key)
{
struct futex_q *this;
plist_for_each_entry(this, &hb->chain, list) {
if (match_futex(&this->key, key))
return this;
}
return NULL;
}
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
u32 uval, u32 newval)
{
int ret;
pagefault_disable();
ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
pagefault_enable();
return ret;
}
static int get_futex_value_locked(u32 *dest, u32 __user *from)
{
int ret;
pagefault_disable();
ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
pagefault_enable();
return ret ? -EFAULT : 0;
}
/*
* PI code:
*/
static int refill_pi_state_cache(void)
{
struct futex_pi_state *pi_state;
if (likely(current->pi_state_cache))
return 0;
pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
if (!pi_state)
return -ENOMEM;
INIT_LIST_HEAD(&pi_state->list);
/* pi_mutex gets initialized later */
pi_state->owner = NULL;
atomic_set(&pi_state->refcount, 1);
pi_state->key = FUTEX_KEY_INIT;
current->pi_state_cache = pi_state;
return 0;
}
static struct futex_pi_state * alloc_pi_state(void)
{
struct futex_pi_state *pi_state = current->pi_state_cache;
WARN_ON(!pi_state);
current->pi_state_cache = NULL;
return pi_state;
}
static void free_pi_state(struct futex_pi_state *pi_state)
{
if (!atomic_dec_and_test(&pi_state->refcount))
return;
/*
* If pi_state->owner is NULL, the owner is most probably dying
* and has cleaned up the pi_state already
*/
if (pi_state->owner) {
raw_spin_lock_irq(&pi_state->owner->pi_lock);
list_del_init(&pi_state->list);
raw_spin_unlock_irq(&pi_state->owner->pi_lock);
rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
}
if (current->pi_state_cache)
kfree(pi_state);
else {
/*
* pi_state->list is already empty.
* clear pi_state->owner.
* refcount is at 0 - put it back to 1.
*/
pi_state->owner = NULL;
atomic_set(&pi_state->refcount, 1);
current->pi_state_cache = pi_state;
}
}
/*
* Look up the task based on what TID userspace gave us.
* We dont trust it.
*/
static struct task_struct * futex_find_get_task(pid_t pid)
{
struct task_struct *p;
rcu_read_lock();
p = find_task_by_vpid(pid);
if (p)
get_task_struct(p);
rcu_read_unlock();
return p;
}
/*
* This task is holding PI mutexes at exit time => bad.
* Kernel cleans up PI-state, but userspace is likely hosed.
* (Robust-futex cleanup is separate and might save the day for userspace.)
*/
void exit_pi_state_list(struct task_struct *curr)
{
struct list_head *next, *head = &curr->pi_state_list;
struct futex_pi_state *pi_state;
struct futex_hash_bucket *hb;
union futex_key key = FUTEX_KEY_INIT;
if (!futex_cmpxchg_enabled)
return;
/*
* We are a ZOMBIE and nobody can enqueue itself on
* pi_state_list anymore, but we have to be careful
* versus waiters unqueueing themselves:
*/
raw_spin_lock_irq(&curr->pi_lock);
while (!list_empty(head)) {
next = head->next;
pi_state = list_entry(next, struct futex_pi_state, list);
key = pi_state->key;
hb = hash_futex(&key);
raw_spin_unlock_irq(&curr->pi_lock);
spin_lock(&hb->lock);
raw_spin_lock_irq(&curr->pi_lock);
/*
* We dropped the pi-lock, so re-check whether this
* task still owns the PI-state:
*/
if (head->next != next) {
spin_unlock(&hb->lock);
continue;
}
WARN_ON(pi_state->owner != curr);
WARN_ON(list_empty(&pi_state->list));
list_del_init(&pi_state->list);
pi_state->owner = NULL;
raw_spin_unlock_irq(&curr->pi_lock);
rt_mutex_unlock(&pi_state->pi_mutex);
spin_unlock(&hb->lock);
raw_spin_lock_irq(&curr->pi_lock);
}
raw_spin_unlock_irq(&curr->pi_lock);
}
static int
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
union futex_key *key, struct futex_pi_state **ps)
{
struct futex_pi_state *pi_state = NULL;
struct futex_q *this, *next;
struct task_struct *p;
pid_t pid = uval & FUTEX_TID_MASK;
plist_for_each_entry_safe(this, next, &hb->chain, list) {
if (match_futex(&this->key, key)) {
/*
* Another waiter already exists - bump up
* the refcount and return its pi_state:
*/
pi_state = this->pi_state;
/*
* Userspace might have messed up non-PI and PI futexes
*/
if (unlikely(!pi_state))
return -EINVAL;
WARN_ON(!atomic_read(&pi_state->refcount));
/*
* When pi_state->owner is NULL then the owner died
* and another waiter is on the fly. pi_state->owner
* is fixed up by the task which acquires
* pi_state->rt_mutex.
*
* We do not check for pid == 0 which can happen when
* the owner died and robust_list_exit() cleared the
* TID.
*/
if (pid && pi_state->owner) {
/*
* Bail out if user space manipulated the
* futex value.
*/
if (pid != task_pid_vnr(pi_state->owner))
return -EINVAL;
}
atomic_inc(&pi_state->refcount);
*ps = pi_state;
return 0;
}
}
/*
* We are the first waiter - try to look up the real owner and attach
* the new pi_state to it, but bail out when TID = 0
*/
if (!pid)
return -ESRCH;
p = futex_find_get_task(pid);
if (!p)
return -ESRCH;
/*
* We need to look at the task state flags to figure out,
* whether the task is exiting. To protect against the do_exit
* change of the task flags, we do this protected by
* p->pi_lock:
*/
raw_spin_lock_irq(&p->pi_lock);
if (unlikely(p->flags & PF_EXITING)) {
/*
* The task is on the way out. When PF_EXITPIDONE is
* set, we know that the task has finished the
* cleanup:
*/
int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
raw_spin_unlock_irq(&p->pi_lock);
put_task_struct(p);
return ret;
}
pi_state = alloc_pi_state();
/*
* Initialize the pi_mutex in locked state and make 'p'
* the owner of it:
*/
rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
/* Store the key for possible exit cleanups: */
pi_state->key = *key;
WARN_ON(!list_empty(&pi_state->list));
list_add(&pi_state->list, &p->pi_state_list);
pi_state->owner = p;
raw_spin_unlock_irq(&p->pi_lock);
put_task_struct(p);
*ps = pi_state;
return 0;
}
/**
* futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
* @uaddr: the pi futex user address
* @hb: the pi futex hash bucket
* @key: the futex key associated with uaddr and hb
* @ps: the pi_state pointer where we store the result of the
* lookup
* @task: the task to perform the atomic lock work for. This will
* be "current" except in the case of requeue pi.
* @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
*
* Return:
* 0 - ready to wait;
* 1 - acquired the lock;
* <0 - error
*
* The hb->lock and futex_key refs shall be held by the caller.
*/
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
union futex_key *key,
struct futex_pi_state **ps,
struct task_struct *task, int set_waiters)
{
int lock_taken, ret, force_take = 0;
u32 uval, newval, curval, vpid = task_pid_vnr(task);
retry:
ret = lock_taken = 0;
/*
* To avoid races, we attempt to take the lock here again
* (by doing a 0 -> TID atomic cmpxchg), while holding all
* the locks. It will most likely not succeed.
*/
newval = vpid;
if (set_waiters)
newval |= FUTEX_WAITERS;
if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
return -EFAULT;
/*
* Detect deadlocks.
*/
if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
return -EDEADLK;
/*
* Surprise - we got the lock. Just return to userspace:
*/
if (unlikely(!curval))
return 1;
uval = curval;
/*
* Set the FUTEX_WAITERS flag, so the owner will know it has someone
* to wake at the next unlock.
*/
newval = curval | FUTEX_WAITERS;
/*
* Should we force take the futex? See below.
*/
if (unlikely(force_take)) {
/*
* Keep the OWNER_DIED and the WAITERS bit and set the
* new TID value.
*/
newval = (curval & ~FUTEX_TID_MASK) | vpid;
force_take = 0;
lock_taken = 1;
}
if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
return -EFAULT;
if (unlikely(curval != uval))
goto retry;
/*
* We took the lock due to forced take over.
*/
if (unlikely(lock_taken))
return 1;
/*
* We dont have the lock. Look up the PI state (or create it if
* we are the first waiter):
*/
ret = lookup_pi_state(uval, hb, key, ps);
if (unlikely(ret)) {
switch (ret) {
case -ESRCH:
/*
* We failed to find an owner for this
* futex. So we have no pi_state to block
* on. This can happen in two cases:
*
* 1) The owner died
* 2) A stale FUTEX_WAITERS bit
*
* Re-read the futex value.
*/
if (get_futex_value_locked(&curval, uaddr))
return -EFAULT;
/*
* If the owner died or we have a stale
* WAITERS bit the owner TID in the user space
* futex is 0.
*/
if (!(curval & FUTEX_TID_MASK)) {
force_take = 1;
goto retry;
}
default:
break;
}
}
return ret;
}
/**
* __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
* @q: The futex_q to unqueue
*
* The q->lock_ptr must not be NULL and must be held by the caller.
*/
static void __unqueue_futex(struct futex_q *q)
{
struct futex_hash_bucket *hb;
if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
|| WARN_ON(plist_node_empty(&q->list)))
return;
hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
plist_del(&q->list, &hb->chain);
}
/*
* The hash bucket lock must be held when this is called.
* Afterwards, the futex_q must not be accessed.
*/
static void wake_futex(struct futex_q *q)
{
struct task_struct *p = q->task;
if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
return;
/*
* We set q->lock_ptr = NULL _before_ we wake up the task. If
* a non-futex wake up happens on another CPU then the task
* might exit and p would dereference a non-existing task
* struct. Prevent this by holding a reference on p across the
* wake up.
*/
get_task_struct(p);
__unqueue_futex(q);
/*
* The waiting task can free the futex_q as soon as
* q->lock_ptr = NULL is written, without taking any locks. A
* memory barrier is required here to prevent the following
* store to lock_ptr from getting ahead of the plist_del.
*/
smp_wmb();
q->lock_ptr = NULL;
wake_up_state(p, TASK_NORMAL);
put_task_struct(p);
}
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
struct task_struct *new_owner;
struct futex_pi_state *pi_state = this->pi_state;
u32 uninitialized_var(curval), newval;
if (!pi_state)
return -EINVAL;