-
Notifications
You must be signed in to change notification settings - Fork 930
/
Copy pathdetect.py
executable file
·189 lines (167 loc) · 6.62 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import _init_paths
import os
import os.path as osp
import cv2
import logging
import argparse
import motmetrics as mm
import numpy as np
from tracker.fusetracker import FuseTracker
from tracking_utils import visualization as vis
from tracking_utils.log import logger
from tracking_utils.timer import Timer
from tracking_utils.evaluation import Evaluator
import datasets.dataset.jde as datasets
import torch
from tracking_utils.utils import mkdir_if_missing, tlbr2tlwh
from opts import opts
from models.decode import mot_decode
from utils.post_process import ctdet_post_process
from models.model import create_model, load_model
def write_results_score(filename, results):
save_format = '{frame},{x1},{y1},{w},{h},{s}\n'
with open(filename, 'w') as f:
for frame_id, tlwhs, scores in results:
for tlwh, score in zip(tlwhs, scores):
x1, y1, w, h = tlwh
line = save_format.format(frame=frame_id, x1=x1, y1=y1, w=w, h=h, s=score)
f.write(line)
print('save results to {}'.format(filename))
def post_process(opt, dets, meta):
dets = dets.detach().cpu().numpy()
dets = dets.reshape(1, -1, dets.shape[2])
dets = ctdet_post_process(
dets.copy(), [meta['c']], [meta['s']],
meta['out_height'], meta['out_width'], opt.num_classes)
for j in range(1, opt.num_classes + 1):
dets[0][j] = np.array(dets[0][j], dtype=np.float32).reshape(-1, 5)
return dets[0]
def merge_outputs(opt, detections):
results = {}
for j in range(1, opt.num_classes + 1):
results[j] = np.concatenate(
[detection[j] for detection in detections], axis=0).astype(np.float32)
scores = np.hstack(
[results[j][:, 4] for j in range(1, opt.num_classes + 1)])
if len(scores) > 128:
kth = len(scores) - 128
thresh = np.partition(scores, kth)[kth]
for j in range(1, opt.num_classes + 1):
keep_inds = (results[j][:, 4] >= thresh)
results[j] = results[j][keep_inds]
return results
def eval_seq(opt, dataloader, data_type, result_filename, save_dir=None, show_image=True, frame_rate=30):
if save_dir:
mkdir_if_missing(save_dir)
if opt.gpus[0] >= 0:
opt.device = torch.device('cuda')
else:
opt.device = torch.device('cpu')
print('Creating model...')
model = create_model(opt.arch, opt.heads, opt.head_conv)
model = load_model(model, opt.load_model)
# model = torch.nn.DataParallel(model)
model = model.to(opt.device)
model.eval()
timer = Timer()
results = []
frame_id = 0
for path, img, img0 in dataloader:
if frame_id % 20 == 0:
logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time)))
# run detecting
timer.tic()
blob = torch.from_numpy(img).cuda().unsqueeze(0)
width = img0.shape[1]
height = img0.shape[0]
inp_height = blob.shape[2]
inp_width = blob.shape[3]
c = np.array([width / 2., height / 2.], dtype=np.float32)
s = max(float(inp_width) / float(inp_height) * height, width) * 1.0
meta = {'c': c, 's': s,
'out_height': inp_height // opt.down_ratio,
'out_width': inp_width // opt.down_ratio}
with torch.no_grad():
output = model(blob)[-1]
hm = output['hm'].sigmoid_()
wh = output['wh']
reg = output['reg'] if opt.reg_offset else None
dets, inds = mot_decode(hm, wh, reg=reg, ltrb=opt.ltrb, K=opt.K)
dets = post_process(opt, dets, meta)
dets = merge_outputs(opt, [dets])[1]
dets = dets[dets[:, 4] > 0.1]
dets[:, :4] = tlbr2tlwh(dets[:, :4])
tlwhs = []
scores = []
for *tlwh, conf in dets:
tlwhs.append(tlwh)
scores.append(conf)
timer.toc()
# save results
results.append((frame_id + 1, tlwhs, scores))
frame_id += 1
# save results
write_results_score(result_filename, results)
#write_results_score_hie(result_filename, results, data_type)
return frame_id, timer.average_time, timer.calls
def main(opt, data_root='/data/MOT16/train', det_root=None, seqs=('MOT16-05',), exp_name='demo',
save_images=False, save_videos=False, show_image=True):
logger.setLevel(logging.INFO)
result_root = os.path.join(data_root, '..', 'dets', exp_name)
mkdir_if_missing(result_root)
data_type = 'mot'
# run tracking
accs = []
n_frame = 0
timer_avgs, timer_calls = [], []
for seq in seqs:
output_dir = os.path.join(data_root, '..', 'outputs', exp_name, seq) if save_images or save_videos else None
logger.info('start seq: {}'.format(seq))
dataloader = datasets.LoadImages(osp.join(data_root, seq, 'img1'), opt.img_size)
result_filename = os.path.join(result_root, '{}.txt'.format(seq))
nf, ta, tc = eval_seq(opt, dataloader, data_type, result_filename,
save_dir=output_dir, show_image=show_image)
n_frame += nf
timer_avgs.append(ta)
timer_calls.append(tc)
timer_avgs = np.asarray(timer_avgs)
timer_calls = np.asarray(timer_calls)
all_time = np.dot(timer_avgs, timer_calls)
avg_time = all_time / np.sum(timer_calls)
logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(all_time, 1.0 / avg_time))
if __name__ == '__main__':
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
opt = opts().init()
if opt.val_hie:
seqs_str = '''1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19'''
#seqs_str = '''9'''
#seqs_str = '''11 12 13 14 15 16 17 18 19'''
data_root = '/data/yfzhang/MOT/JDE/HIE/HIE20/images/train'
elif opt.test_hie:
seqs_str = '''20 21 22 23 24 25 26 27 28 29 30 31 32'''
seqs_str = '''25'''
data_root = '/data/yfzhang/MOT/JDE/HIE/HIE20/images/test'
elif opt.val_mot17:
seqs_str = '''MOT17-02-SDP
MOT17-04-SDP
MOT17-05-SDP
MOT17-09-SDP
MOT17-10-SDP
MOT17-11-SDP
MOT17-13-SDP'''
#seqs_str = '''MOT17-02-SDP'''
data_root = os.path.join(opt.data_dir, 'MOT17/images/train')
else:
seqs_str = None
data_root = None
seqs = [seq.strip() for seq in seqs_str.split()]
main(opt,
data_root=data_root,
seqs=seqs,
exp_name='fairmot_mot17',
show_image=False,
save_images=False,
save_videos=False)