-
Notifications
You must be signed in to change notification settings - Fork 0
/
bwt.c
449 lines (402 loc) · 14.4 KB
/
bwt.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
/* The MIT License
Copyright (c) 2008 Genome Research Ltd (GRL).
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
/* Contact: Heng Li <[email protected]> */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <stdint.h>
#include <limits.h>
#include "utils.h"
#include "bwt.h"
#include "kvec.h"
#ifdef USE_MALLOC_WRAPPERS
# include "malloc_wrap.h"
#endif
void bwt_gen_cnt_table(bwt_t *bwt)
{
int i, j;
for (i = 0; i != 256; ++i) {
uint32_t x = 0;
for (j = 0; j != 4; ++j)
x |= (((i&3) == j) + ((i>>2&3) == j) + ((i>>4&3) == j) + (i>>6 == j)) << (j<<3);
bwt->cnt_table[i] = x;
}
}
static inline bwtint_t bwt_invPsi(const bwt_t *bwt, bwtint_t k) // compute inverse CSA
{
bwtint_t x = k - (k > bwt->primary);
x = bwt_B0(bwt, x);
x = bwt->L2[x] + bwt_occ(bwt, k, x);
return k == bwt->primary? 0 : x;
}
// bwt->bwt and bwt->occ must be precalculated
void bwt_cal_sa(bwt_t *bwt, int intv)
{
bwtint_t isa, sa, i; // S(isa) = sa
int intv_round = intv;
kv_roundup32(intv_round);
xassert(intv_round == intv, "SA sample interval is not a power of 2.");
xassert(bwt->bwt, "bwt_t::bwt is not initialized.");
if (bwt->sa) free(bwt->sa);
bwt->sa_intv = intv;
bwt->n_sa = (bwt->seq_len + intv) / intv;
bwt->sa = (bwtint_t*)calloc(bwt->n_sa, sizeof(bwtint_t));
// calculate SA value
isa = 0; sa = bwt->seq_len;
for (i = 0; i < bwt->seq_len; ++i) {
if (isa % intv == 0) bwt->sa[isa/intv] = sa;
--sa;
isa = bwt_invPsi(bwt, isa);
}
if (isa % intv == 0) bwt->sa[isa/intv] = sa;
bwt->sa[0] = (bwtint_t)-1; // before this line, bwt->sa[0] = bwt->seq_len
}
bwtint_t bwt_sa(const bwt_t *bwt, bwtint_t k)
{
bwtint_t sa = 0, mask = bwt->sa_intv - 1;
while (k & mask) {
++sa;
k = bwt_invPsi(bwt, k);
}
/* without setting bwt->sa[0] = -1, the following line should be
changed to (sa + bwt->sa[k/bwt->sa_intv]) % (bwt->seq_len + 1) */
return sa + bwt->sa[k/bwt->sa_intv];
}
static inline int __occ_aux(uint64_t y, int c)
{
// reduce nucleotide counting to bits counting
y = ((c&2)? y : ~y) >> 1 & ((c&1)? y : ~y) & 0x5555555555555555ull;
// count the number of 1s in y
y = (y & 0x3333333333333333ull) + (y >> 2 & 0x3333333333333333ull);
return ((y + (y >> 4)) & 0xf0f0f0f0f0f0f0full) * 0x101010101010101ull >> 56;
}
bwtint_t bwt_occ(const bwt_t *bwt, bwtint_t k, ubyte_t c)
{
bwtint_t n;
uint32_t *p, *end;
if (k == bwt->seq_len) return bwt->L2[c+1] - bwt->L2[c];
if (k == (bwtint_t)(-1)) return 0;
k -= (k >= bwt->primary); // because $ is not in bwt
// retrieve Occ at k/OCC_INTERVAL
n = ((bwtint_t*)(p = bwt_occ_intv(bwt, k)))[c];
p += sizeof(bwtint_t); // jump to the start of the first BWT cell
// calculate Occ up to the last k/32
end = p + (((k>>5) - ((k&~OCC_INTV_MASK)>>5))<<1);
for (; p < end; p += 2) n += __occ_aux((uint64_t)p[0]<<32 | p[1], c);
// calculate Occ
n += __occ_aux(((uint64_t)p[0]<<32 | p[1]) & ~((1ull<<((~k&31)<<1)) - 1), c);
if (c == 0) n -= ~k&31; // corrected for the masked bits
return n;
}
// an analogy to bwt_occ() but more efficient, requiring k <= l
void bwt_2occ(const bwt_t *bwt, bwtint_t k, bwtint_t l, ubyte_t c, bwtint_t *ok, bwtint_t *ol)
{
bwtint_t _k, _l;
_k = (k >= bwt->primary)? k-1 : k;
_l = (l >= bwt->primary)? l-1 : l;
if (_l/OCC_INTERVAL != _k/OCC_INTERVAL || k == (bwtint_t)(-1) || l == (bwtint_t)(-1)) {
*ok = bwt_occ(bwt, k, c);
*ol = bwt_occ(bwt, l, c);
} else {
bwtint_t m, n, i, j;
uint32_t *p;
if (k >= bwt->primary) --k;
if (l >= bwt->primary) --l;
n = ((bwtint_t*)(p = bwt_occ_intv(bwt, k)))[c];
p += sizeof(bwtint_t);
// calculate *ok
j = k >> 5 << 5;
for (i = k/OCC_INTERVAL*OCC_INTERVAL; i < j; i += 32, p += 2)
n += __occ_aux((uint64_t)p[0]<<32 | p[1], c);
m = n;
n += __occ_aux(((uint64_t)p[0]<<32 | p[1]) & ~((1ull<<((~k&31)<<1)) - 1), c);
if (c == 0) n -= ~k&31; // corrected for the masked bits
*ok = n;
// calculate *ol
j = l >> 5 << 5;
for (; i < j; i += 32, p += 2)
m += __occ_aux((uint64_t)p[0]<<32 | p[1], c);
m += __occ_aux(((uint64_t)p[0]<<32 | p[1]) & ~((1ull<<((~l&31)<<1)) - 1), c);
if (c == 0) m -= ~l&31; // corrected for the masked bits
*ol = m;
}
}
#define __occ_aux4(bwt, b) \
((bwt)->cnt_table[(b)&0xff] + (bwt)->cnt_table[(b)>>8&0xff] \
+ (bwt)->cnt_table[(b)>>16&0xff] + (bwt)->cnt_table[(b)>>24])
void bwt_occ4(const bwt_t *bwt, bwtint_t k, bwtint_t cnt[4])
{
bwtint_t x;
uint32_t *p, tmp, *end;
if (k == (bwtint_t)(-1)) {
memset(cnt, 0, 4 * sizeof(bwtint_t));
return;
}
k -= (k >= bwt->primary); // because $ is not in bwt
p = bwt_occ_intv(bwt, k);
memcpy(cnt, p, 4 * sizeof(bwtint_t));
p += sizeof(bwtint_t); // sizeof(bwtint_t) = 4*(sizeof(bwtint_t)/sizeof(uint32_t))
end = p + ((k>>4) - ((k&~OCC_INTV_MASK)>>4)); // this is the end point of the following loop
for (x = 0; p < end; ++p) x += __occ_aux4(bwt, *p);
tmp = *p & ~((1U<<((~k&15)<<1)) - 1);
x += __occ_aux4(bwt, tmp) - (~k&15);
cnt[0] += x&0xff; cnt[1] += x>>8&0xff; cnt[2] += x>>16&0xff; cnt[3] += x>>24;
}
// an analogy to bwt_occ4() but more efficient, requiring k <= l
void bwt_2occ4(const bwt_t *bwt, bwtint_t k, bwtint_t l, bwtint_t cntk[4], bwtint_t cntl[4])
{
bwtint_t _k, _l;
_k = k - (k >= bwt->primary);
_l = l - (l >= bwt->primary);
if (_l>>OCC_INTV_SHIFT != _k>>OCC_INTV_SHIFT || k == (bwtint_t)(-1) || l == (bwtint_t)(-1)) {
bwt_occ4(bwt, k, cntk);
bwt_occ4(bwt, l, cntl);
} else {
bwtint_t x, y;
uint32_t *p, tmp, *endk, *endl;
k -= (k >= bwt->primary); // because $ is not in bwt
l -= (l >= bwt->primary);
p = bwt_occ_intv(bwt, k);
memcpy(cntk, p, 4 * sizeof(bwtint_t));
p += sizeof(bwtint_t); // sizeof(bwtint_t) = 4*(sizeof(bwtint_t)/sizeof(uint32_t))
// prepare cntk[]
endk = p + ((k>>4) - ((k&~OCC_INTV_MASK)>>4));
endl = p + ((l>>4) - ((l&~OCC_INTV_MASK)>>4));
for (x = 0; p < endk; ++p) x += __occ_aux4(bwt, *p);
y = x;
tmp = *p & ~((1U<<((~k&15)<<1)) - 1);
x += __occ_aux4(bwt, tmp) - (~k&15);
// calculate cntl[] and finalize cntk[]
for (; p < endl; ++p) y += __occ_aux4(bwt, *p);
tmp = *p & ~((1U<<((~l&15)<<1)) - 1);
y += __occ_aux4(bwt, tmp) - (~l&15);
memcpy(cntl, cntk, 4 * sizeof(bwtint_t));
cntk[0] += x&0xff; cntk[1] += x>>8&0xff; cntk[2] += x>>16&0xff; cntk[3] += x>>24;
cntl[0] += y&0xff; cntl[1] += y>>8&0xff; cntl[2] += y>>16&0xff; cntl[3] += y>>24;
}
}
int bwt_match_exact(const bwt_t *bwt, int len, const ubyte_t *str, bwtint_t *sa_begin, bwtint_t *sa_end)
{
bwtint_t k, l, ok, ol;
int i;
k = 0; l = bwt->seq_len;
for (i = len - 1; i >= 0; --i) {
ubyte_t c = str[i];
if (c > 3) return 0; // no match
bwt_2occ(bwt, k - 1, l, c, &ok, &ol);
k = bwt->L2[c] + ok + 1;
l = bwt->L2[c] + ol;
if (k > l) break; // no match
}
if (k > l) return 0; // no match
if (sa_begin) *sa_begin = k;
if (sa_end) *sa_end = l;
return l - k + 1;
}
int bwt_match_exact_alt(const bwt_t *bwt, int len, const ubyte_t *str, bwtint_t *k0, bwtint_t *l0)
{
int i;
bwtint_t k, l, ok, ol;
k = *k0; l = *l0;
for (i = len - 1; i >= 0; --i) {
ubyte_t c = str[i];
if (c > 3) return 0; // there is an N here. no match
bwt_2occ(bwt, k - 1, l, c, &ok, &ol);
k = bwt->L2[c] + ok + 1;
l = bwt->L2[c] + ol;
if (k > l) return 0; // no match
}
*k0 = k; *l0 = l;
return l - k + 1;
}
/*********************
* Bidirectional BWT *
*********************/
void bwt_extend(const bwt_t *bwt, const bwtintv_t *ik, bwtintv_t ok[4], int is_back)
{
bwtint_t tk[4], tl[4];
int i;
bwt_2occ4(bwt, ik->x[!is_back] - 1, ik->x[!is_back] - 1 + ik->x[2], tk, tl);
for (i = 0; i != 4; ++i) {
ok[i].x[!is_back] = bwt->L2[i] + 1 + tk[i];
ok[i].x[2] = tl[i] - tk[i];
}
ok[3].x[is_back] = ik->x[is_back] + (ik->x[!is_back] <= bwt->primary && ik->x[!is_back] + ik->x[2] - 1 >= bwt->primary);
ok[2].x[is_back] = ok[3].x[is_back] + ok[3].x[2];
ok[1].x[is_back] = ok[2].x[is_back] + ok[2].x[2];
ok[0].x[is_back] = ok[1].x[is_back] + ok[1].x[2];
}
static void bwt_reverse_intvs(bwtintv_v *p)
{
if (p->n > 1) {
int j;
for (j = 0; j < p->n>>1; ++j) {
bwtintv_t tmp = p->a[p->n - 1 - j];
p->a[p->n - 1 - j] = p->a[j];
p->a[j] = tmp;
}
}
}
int bwt_smem1a(const bwt_t *bwt, int len, const uint8_t *q, int x, int min_intv, int max_len, uint64_t max_intv, bwtintv_v *mem, bwtintv_v *tmpvec[2])
{
int i, j, c, ret;
bwtintv_t ik, ok[4];
bwtintv_v a[2], *prev, *curr, *swap;
mem->n = 0;
if (q[x] > 3) return x + 1;
if (min_intv < 1) min_intv = 1; // the interval size should be at least 1
kv_init(a[0]); kv_init(a[1]);
prev = tmpvec && tmpvec[0]? tmpvec[0] : &a[0]; // use the temporary vector if provided
curr = tmpvec && tmpvec[1]? tmpvec[1] : &a[1];
bwt_set_intv(bwt, q[x], ik); // the initial interval of a single base
ik.info = x + 1;
for (i = x + 1, curr->n = 0; i < len; ++i) { // forward search
if (q[i] < 4) { // an A/C/G/T base
c = 3 - q[i]; // complement of q[i]
bwt_extend(bwt, &ik, ok, 0);
if (ok[c].x[2] != ik.x[2]) { // change of the interval size
kv_push(bwtintv_t, *curr, ik);
if (ok[c].x[2] < min_intv) break; // the interval size is too small to be extended further
if (i - x > max_len && ik.x[2] < max_intv) break;
}
ik = ok[c]; ik.info = i + 1;
} else { // an ambiguous base
kv_push(bwtintv_t, *curr, ik);
break; // always terminate extension at an ambiguous base; in this case, i<len always stands
}
}
if (i == len) kv_push(bwtintv_t, *curr, ik); // push the last interval if we reach the end
bwt_reverse_intvs(curr); // s.t. smaller intervals (i.e. longer matches) visited first
ret = curr->a[0].info; // this will be the returned value
swap = curr; curr = prev; prev = swap;
for (i = x - 1; i >= -1; --i) { // backward search for MEMs
c = i < 0? -1 : q[i] < 4? q[i] : -1; // c==-1 if i<0 or q[i] is an ambiguous base
for (j = 0, curr->n = 0; j < prev->n; ++j) {
bwtintv_t *p = &prev->a[j];
int max_stop = 0;
bwt_extend(bwt, p, ok, 1);
if (ok[c].x[2] != p->x[2]) { // change of interval size
if (p->info - i - 1 > max_len && p->x[2] < max_intv)
max_stop = 1;
}
if (c < 0 || ok[c].x[2] < min_intv || max_stop) { // keep the hit if reaching the beginning or an ambiguous base or the intv is small enough
if (curr->n == 0) { // test curr->n>0 to make sure there are no longer matches
if (mem->n == 0 || i + 1 < mem->a[mem->n-1].info>>32) { // skip contained matches
ik = *p; ik.info |= (uint64_t)(i + 1)<<32;
kv_push(bwtintv_t, *mem, ik);
}
} // otherwise the match is contained in another longer match
} else if (curr->n == 0 || ok[c].x[2] != curr->a[curr->n-1].x[2]) {
ok[c].info = p->info;
kv_push(bwtintv_t, *curr, ok[c]);
}
}
if (curr->n == 0) break;
swap = curr; curr = prev; prev = swap;
}
bwt_reverse_intvs(mem); // s.t. sorted by the start coordinate
if (tmpvec == 0 || tmpvec[0] == 0) free(a[0].a);
if (tmpvec == 0 || tmpvec[1] == 0) free(a[1].a);
return ret;
}
int bwt_smem1(const bwt_t *bwt, int len, const uint8_t *q, int x, int min_intv, bwtintv_v *mem, bwtintv_v *tmpvec[2])
{
return bwt_smem1a(bwt, len, q, x, min_intv, INT_MAX, 0, mem, tmpvec);
}
/*************************
* Read/write BWT and SA *
*************************/
void bwt_dump_bwt(const char *fn, const bwt_t *bwt)
{
FILE *fp;
fp = xopen(fn, "wb");
err_fwrite(&bwt->primary, sizeof(bwtint_t), 1, fp);
err_fwrite(bwt->L2+1, sizeof(bwtint_t), 4, fp);
err_fwrite(bwt->bwt, 4, bwt->bwt_size, fp);
err_fflush(fp);
err_fclose(fp);
}
void bwt_dump_sa(const char *fn, const bwt_t *bwt)
{
FILE *fp;
fp = xopen(fn, "wb");
err_fwrite(&bwt->primary, sizeof(bwtint_t), 1, fp);
err_fwrite(bwt->L2+1, sizeof(bwtint_t), 4, fp);
err_fwrite(&bwt->sa_intv, sizeof(bwtint_t), 1, fp);
err_fwrite(&bwt->seq_len, sizeof(bwtint_t), 1, fp);
err_fwrite(bwt->sa + 1, sizeof(bwtint_t), bwt->n_sa - 1, fp);
err_fflush(fp);
err_fclose(fp);
}
static bwtint_t fread_fix(FILE *fp, bwtint_t size, void *a)
{ // Mac/Darwin has a bug when reading data longer than 2GB. This function fixes this issue by reading data in small chunks
const int bufsize = 0x1000000; // 16M block
bwtint_t offset = 0;
while (size) {
int x = bufsize < size? bufsize : size;
if ((x = err_fread_noeof(a + offset, 1, x, fp)) == 0) break;
size -= x; offset += x;
}
return offset;
}
void bwt_restore_sa(const char *fn, bwt_t *bwt)
{
char skipped[256];
FILE *fp;
bwtint_t primary;
fp = xopen(fn, "rb");
err_fread_noeof(&primary, sizeof(bwtint_t), 1, fp);
xassert(primary == bwt->primary, "SA-BWT inconsistency: primary is not the same.");
err_fread_noeof(skipped, sizeof(bwtint_t), 4, fp); // skip
err_fread_noeof(&bwt->sa_intv, sizeof(bwtint_t), 1, fp);
err_fread_noeof(&primary, sizeof(bwtint_t), 1, fp);
xassert(primary == bwt->seq_len, "SA-BWT inconsistency: seq_len is not the same.");
bwt->n_sa = (bwt->seq_len + bwt->sa_intv) / bwt->sa_intv;
bwt->sa = (bwtint_t*)calloc(bwt->n_sa, sizeof(bwtint_t));
bwt->sa[0] = -1;
fread_fix(fp, sizeof(bwtint_t) * (bwt->n_sa - 1), bwt->sa + 1);
err_fclose(fp);
}
bwt_t *bwt_restore_bwt(const char *fn)
{
bwt_t *bwt;
FILE *fp;
bwt = (bwt_t*)calloc(1, sizeof(bwt_t));
fp = xopen(fn, "rb");
err_fseek(fp, 0, SEEK_END);
bwt->bwt_size = (err_ftell(fp) - sizeof(bwtint_t) * 5) >> 2;
bwt->bwt = (uint32_t*)calloc(bwt->bwt_size, 4);
err_fseek(fp, 0, SEEK_SET);
err_fread_noeof(&bwt->primary, sizeof(bwtint_t), 1, fp);
err_fread_noeof(bwt->L2+1, sizeof(bwtint_t), 4, fp);
fread_fix(fp, bwt->bwt_size<<2, bwt->bwt);
bwt->seq_len = bwt->L2[4];
err_fclose(fp);
bwt_gen_cnt_table(bwt);
return bwt;
}
void bwt_destroy(bwt_t *bwt)
{
if (bwt == 0) return;
free(bwt->sa); free(bwt->bwt);
free(bwt);
}