forked from niall-turbitt/e2e-mlops
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_setup.py
310 lines (259 loc) · 12.6 KB
/
demo_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# Databricks notebook source
# MAGIC %md
# MAGIC
# MAGIC # `demo_setup`
# MAGIC
# MAGIC Pipeline to ensure that we can run the demo from a clean setup. Executing the `DemoSetup.run()` will do the following steps:
# MAGIC
# MAGIC - Delete Model Registry model if exists (archive any existing models)
# MAGIC - Delete MLflow experiments if exists
# MAGIC - Delete Feature Table if exists
# COMMAND ----------
# DBTITLE 1,pip install requirements.txt
# MAGIC %pip install -r ../requirements.txt
# COMMAND ----------
# DBTITLE 1,Set env
dbutils.widgets.dropdown('env', 'dev', ['dev', 'staging', 'prod'], 'Environment Name')
# COMMAND ----------
# DBTITLE 1,Module Imports
import mlflow
from mlflow.tracking import MlflowClient
from mlflow.exceptions import RestException
from telco_churn.utils.notebook_utils import load_and_set_env_vars, load_config
from telco_churn.utils.logger_utils import get_logger
from databricks.feature_store.client import FeatureStoreClient
client = MlflowClient()
fs = FeatureStoreClient()
_logger = get_logger()
# COMMAND ----------
# DBTITLE 1,Load pipeline config params
# Set pipeline name
pipeline_name = 'demo_setup'
# Load pipeline config yaml file (../conf/pipeline_configs/{pipeline_name}.yml)
pipeline_config = load_config(pipeline_name)
# Load and set arbitrary params via spark_env_vars
# Params passed via ../conf/{env}/.{env}.env and ../conf/.base_data_params
env_vars = load_and_set_env_vars(env=dbutils.widgets.get('env'))
# COMMAND ----------
# DBTITLE 1,Pipeline Class
class DemoSetup:
def __init__(self, conf: dict, env_vars: dict):
self.conf = conf
self.env_vars = env_vars
def _get_train_experiment_id(self):
try:
return self.env_vars['model_train_experiment_id']
except KeyError:
return None
def _get_train_experiment_path(self):
try:
return self.env_vars['model_train_experiment_path']
except KeyError:
return None
def _get_deploy_experiment_id(self):
try:
return self.env_vars['model_deploy_experiment_id']
except KeyError:
return None
def _get_deploy_experiment_path(self):
try:
return self.env_vars['model_deploy_experiment_path']
except KeyError:
return None
@staticmethod
def _check_mlflow_model_registry_exists(model_name) -> bool:
"""
Check if model exists in MLflow Model Registry.
Returns True if model exists in Model Registry, False if not
"""
try:
client.get_registered_model(name=model_name)
_logger.info(f'MLflow Model Registry name: {model_name} exists')
return True
except RestException:
_logger.info(f'MLflow Model Registry name: {model_name} DOES NOT exists')
return False
@staticmethod
def _archive_registered_models(model_name):
"""
Archive any model versions which are not already under stage='Archived'
"""
registered_model = client.get_registered_model(name=model_name)
latest_versions_list = registered_model.latest_versions
_logger.info(f'MLflow Model Registry name: {model_name}')
for model_version in latest_versions_list:
if model_version.current_stage != 'Archived':
_logger.info(f'Archiving model version: {model_version.version}')
client.transition_model_version_stage(
name=model_name,
version=model_version.version,
stage='Archived'
)
def _delete_registered_model(self, model_name):
"""
Delete an experiment from the backend store.
"""
self._archive_registered_models(model_name)
client.delete_registered_model(name=model_name)
_logger.info(f'Deleted MLflow Model Registry model: {model_name}')
def _check_mlflow_experiments_exists(self) -> dict:
"""
The demo workflow consists of creating 2 MLflow Tracking experiments:
* train_experiment - Experiment used to track params, metrics, artifacts during model training
* deploy_experiment - Experiment used to metrics when comparing models during the deploy model step
This method checks the demo_setup config dict for either the experiment_id or experiment_path for both
experiments.
A dictionary containing the keys train_exp_exists and deploy_exp_exists along with boolean values is returned
Returns
-------
Dictionary indicating whether train and deploy MLflow experiments currently exist
"""
train_experiment_id = self._get_train_experiment_id()
train_experiment_path = self._get_train_experiment_path()
deploy_experiment_id = self._get_deploy_experiment_id()
deploy_experiment_path = self._get_deploy_experiment_path()
def check_by_experiment_id(experiment_id):
try:
mlflow.get_experiment(experiment_id=experiment_id)
_logger.info(f'MLflow Tracking experiment_id: {experiment_id} exists')
return True
except RestException:
_logger.info(f'MLflow Tracking experiment_id: {experiment_id} DOES NOT exist')
return False
def check_by_experiment_path(experiment_path):
experiment = mlflow.get_experiment_by_name(name=experiment_path)
if experiment is not None:
_logger.info(f'MLflow Tracking experiment_path: {experiment_path} exists')
return True
else:
_logger.info(f'MLflow Tracking experiment_path: {experiment_path} DOES NOT exist')
return False
if train_experiment_id is not None:
train_exp_exists = check_by_experiment_id(train_experiment_id)
elif train_experiment_path is not None:
train_exp_exists = check_by_experiment_path(train_experiment_path)
else:
raise RuntimeError('Either model_train_experiment_id or model_train_experiment_path should be passed in '
'deployment.yml')
if deploy_experiment_id is not None:
deploy_exp_exists = check_by_experiment_id(deploy_experiment_id)
elif deploy_experiment_path is not None:
deploy_exp_exists = check_by_experiment_path(deploy_experiment_path)
else:
raise RuntimeError('Either model_train_experiment_id or model_train_experiment_path should be passed in '
'deployment.yml')
return {'train_exp_exists': train_exp_exists,
'deploy_exp_exists': deploy_exp_exists}
def _delete_mlflow_experiments(self, exp_exists_dict: dict):
"""
Check exp_exists_dict if train_exp_exists or deploy_exp_exists is True. Delete experiments if they exist
Parameters
----------
exp_exists_dict : dict
A dictionary containing the keys train_exp_exists and deploy_exp_exists along with boolean values
"""
delete_experiments = [exp for exp, exists in exp_exists_dict.items() if exists == True]
if len(delete_experiments) == 0:
_logger.info(f'No existing experiments to delete')
if 'train_exp_exists' in delete_experiments:
if self.env_vars['model_train_experiment_path'] is not None:
experiment = mlflow.get_experiment_by_name(name=self.env_vars['model_train_experiment_path'])
mlflow.delete_experiment(experiment_id=experiment.experiment_id)
_logger.info(f'Deleted existing experiment_path: {self.env_vars["model_train_experiment_path"]}')
elif self.env_vars['model_train_experiment_id'] is not None:
mlflow.delete_experiment(experiment_id=self.env_vars['model_train_experiment_id'])
_logger.info(f'Deleted existing experiment_id: {self.env_vars["model_train_experiment_id"]}')
else:
raise RuntimeError('Either model_train_experiment_id or model_train_experiment_path should be passed '
'in deployment.yml')
if 'deploy_exp_exists' in delete_experiments:
if self.env_vars['model_deploy_experiment_path'] is not None:
experiment = mlflow.get_experiment_by_name(name=self.env_vars['model_deploy_experiment_path'])
mlflow.delete_experiment(experiment_id=experiment.experiment_id)
_logger.info(
f'Deleted existing experiment_path: {self.env_vars["model_deploy_experiment_path"]}')
elif self.env_vars['model_deploy_experiment_id'] is not None:
mlflow.delete_experiment(experiment_id=self.env_vars['model_deploy_experiment_id'])
_logger.info(f'Deleted existing experiment_id: {self.env_vars["model_deploy_experiment_id"]}')
@staticmethod
def _check_feature_table_exists(feature_store_table) -> bool:
"""
Check if Feature Store feature table exists
Returns True if feature table exists in Feature Store, False if not
"""
try:
fs.get_table(name=feature_store_table)
_logger.info(f'Feature Store feature table: {feature_store_table} exists')
return True
except (ValueError, Exception):
_logger.info(f'Feature Store feature table: {feature_store_table} DOES NOT exist')
return False
@staticmethod
def _drop_feature_table(feature_store_table):
"""
Delete Feature Store feature table
"""
try:
fs.drop_table(
name=feature_store_table
)
_logger.info(f'Deleted Feature Store feature table: {feature_store_table}')
except ValueError:
_logger.info(f'Feature Store feature table: {feature_store_table} does not exist')
def _check_labels_delta_table_exists(self, labels_table_dbfs_path) -> bool:
"""
Check if Delta table exists in DBFS
Parameters
----------
labels_table_dbfs_path : str
Path to Delta table in DBFS
Returns
-------
bool
"""
try:
self.dbutils.fs.ls(labels_table_dbfs_path)
_logger.info(f'Labels Delta table: {labels_table_dbfs_path} exists')
return True
except:
_logger.info(f'Labels Delta table: {labels_table_dbfs_path} DOES NOT exist')
return False
def _delete_labels_delta_table(self, labels_table_dbfs_path):
self.dbutils.fs.rm(labels_table_dbfs_path, True)
_logger.info(f'Deleted labels Delta table: {labels_table_dbfs_path}')
def run(self):
"""
Demo setup steps:
* Delete Model Registry model if exists (archive any existing models)
* Delete MLflow experiments if exists
* Delete Feature Table if exists
"""
_logger.info('==========Demo Setup=========')
_logger.info(f'Running demo-setup pipeline in {self.env_vars["env"]} environment')
if self.conf['delete_model_registry']:
_logger.info('Checking MLflow Model Registry...')
model_name = self.env_vars['model_name']
if self._check_mlflow_model_registry_exists(model_name):
self._delete_registered_model(model_name)
if self.conf['delete_mlflow_experiments']:
_logger.info('Checking MLflow Tracking...')
exp_exists_dict = self._check_mlflow_experiments_exists()
self._delete_mlflow_experiments(exp_exists_dict)
if self.conf['drop_feature_table']:
_logger.info('Checking Feature Store...')
feature_store_database_name = self.env_vars['feature_store_database_name']
feature_store_table_name = self.env_vars['feature_store_table_name']
feature_store_table = f'{feature_store_database_name}.{feature_store_table_name}'
if self._check_feature_table_exists(feature_store_table=feature_store_table):
self._drop_feature_table(feature_store_table=feature_store_table)
if self.conf['drop_labels_table']:
_logger.info('Checking existing labels table...')
labels_table_dbfs_path = self.env_vars['labels_table_dbfs_path']
if self._check_labels_delta_table_exists(labels_table_dbfs_path=labels_table_dbfs_path):
self._delete_labels_delta_table(labels_table_dbfs_path=labels_table_dbfs_path)
_logger.info('==========Demo Setup Complete=========')
# COMMAND ----------
# DBTITLE 1,Execute Pipeline
# Instantiate pipeline
demo_setup_pipeline = DemoSetup(conf=pipeline_config, env_vars=env_vars)
demo_setup_pipeline.run()