title | url | menu | ||||||
---|---|---|---|---|---|---|---|---|
Enabling Iceberg in Flink |
flink |
|
Apache Iceberg supports both Apache Flink's DataStream API and Table API. See the Multi-Engine Support#apache-flink page for the integration of Apache Flink.
Feature support | Flink | Notes |
---|---|---|
SQL create catalog | ✔️ | |
SQL create database | ✔️ | |
SQL create table | ✔️ | |
SQL create table like | ✔️ | |
SQL alter table | ✔️ | Only support altering table properties, column and partition changes are not supported |
SQL drop_table | ✔️ | |
SQL select | ✔️ | Support both streaming and batch mode |
SQL insert into | ✔️ ️ | Support both streaming and batch mode |
SQL insert overwrite | ✔️ ️ | |
DataStream read | ✔️ ️ | |
DataStream append | ✔️ ️ | |
DataStream overwrite | ✔️ ️ | |
Metadata tables | ️ | Support Java API but does not support Flink SQL |
Rewrite files action | ✔️ ️ |
To create iceberg table in flink, we recommend to use Flink SQL Client because it's easier for users to understand the concepts.
Step.1 Downloading the flink 1.11.x binary package from the apache flink download page. We now use scala 2.12 to archive the apache iceberg-flink-runtime jar, so it's recommended to use flink 1.11 bundled with scala 2.12.
FLINK_VERSION=1.11.1
SCALA_VERSION=2.12
APACHE_FLINK_URL=archive.apache.org/dist/flink/
wget ${APACHE_FLINK_URL}/flink-${FLINK_VERSION}/flink-${FLINK_VERSION}-bin-scala_${SCALA_VERSION}.tgz
tar xzvf flink-${FLINK_VERSION}-bin-scala_${SCALA_VERSION}.tgz
Step.2 Start a standalone flink cluster within hadoop environment.
# HADOOP_HOME is your hadoop root directory after unpack the binary package.
export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`
# Start the flink standalone cluster
./bin/start-cluster.sh
Step.3 Start the flink SQL client.
We've created a separate flink-runtime
module in iceberg project to generate a bundled jar, which could be loaded by flink SQL client directly.
If we want to build the flink-runtime
bundled jar manually, please just build the iceberg
project and it will generate the jar under <iceberg-root-dir>/flink-runtime/build/libs
. Of course, we could also download the flink-runtime
jar from the apache official repository.
# HADOOP_HOME is your hadoop root directory after unpack the binary package.
export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`
./bin/sql-client.sh embedded -j <flink-runtime-directory>/iceberg-flink-runtime-xxx.jar shell
By default, iceberg has included hadoop jars for hadoop catalog. If we want to use hive catalog, we will need to load the hive jars when opening the flink sql client. Fortunately, apache flink has provided a bundled hive jar for sql client. So we could open the sql client as the following:
# HADOOP_HOME is your hadoop root directory after unpack the binary package.
export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`
# download Iceberg dependency
ICEBERG_VERSION=0.11.1
MAVEN_URL=https://repo1.maven.org/maven2
ICEBERG_MAVEN_URL=${MAVEN_URL}/org/apache/iceberg
ICEBERG_PACKAGE=iceberg-flink-runtime
wget ${ICEBERG_MAVEN_URL}/${ICEBERG_PACKAGE}/${ICEBERG_VERSION}/${ICEBERG_PACKAGE}-${ICEBERG_VERSION}.jar
# download the flink-sql-connector-hive-${HIVE_VERSION}_${SCALA_VERSION}-${FLINK_VERSION}.jar
HIVE_VERSION=2.3.6
SCALA_VERSION=2.11
FLINK_VERSION=1.11.0
FLINK_CONNECTOR_URL=${MAVEN_URL}/org/apache/flink
FLINK_CONNECTOR_PACKAGE=flink-sql-connector-hive
wget ${FLINK_CONNECTOR_URL}/${FLINK_CONNECTOR_PACKAGE}-${HIVE_VERSION}_${SCALA_VERSION}/${FLINK_VERSION}/${FLINK_CONNECTOR_PACKAGE}-${HIVE_VERSION}_${SCALA_VERSION}-${FLINK_VERSION}.jar
# open the SQL client.
/path/to/bin/sql-client.sh embedded \
-j ${ICEBERG_PACKAGE}-${ICEBERG_VERSION}.jar \
-j ${FLINK_CONNECTOR_PACKAGE}-${HIVE_VERSION}_${SCALA_VERSION}-${FLINK_VERSION}.jar \
shell
Install the Apache Flink dependency using pip
pip install apache-flink==1.11.1
In order for pyflink
to function properly, it needs to have access to all Hadoop jars. For pyflink
we need to copy those Hadoop jars to the installation directory of pyflink
, which can be found under
<PYTHON_ENV_INSTALL_DIR>/site-packages/pyflink/lib/
(see also a mention of this on
the Flink ML).
We can use the following short Python script to copy all Hadoop jars (you need to make sure that HADOOP_HOME
points to your Hadoop installation):
import os
import shutil
import site
def copy_all_hadoop_jars_to_pyflink():
if not os.getenv("HADOOP_HOME"):
raise Exception("The HADOOP_HOME env var must be set and point to a valid Hadoop installation")
jar_files = []
def find_pyflink_lib_dir():
for dir in site.getsitepackages():
package_dir = os.path.join(dir, "pyflink", "lib")
if os.path.exists(package_dir):
return package_dir
return None
for root, _, files in os.walk(os.getenv("HADOOP_HOME")):
for file in files:
if file.endswith(".jar"):
jar_files.append(os.path.join(root, file))
pyflink_lib_dir = find_pyflink_lib_dir()
num_jar_files = len(jar_files)
print(f"Copying {num_jar_files} Hadoop jar files to pyflink's lib directory at {pyflink_lib_dir}")
for jar in jar_files:
shutil.copy(jar, pyflink_lib_dir)
if __name__ == '__main__':
copy_all_hadoop_jars_to_pyflink()
Once the script finished, you should see output similar to
Copying 645 Hadoop jar files to pyflink's lib directory at <PYTHON_DIR>/lib/python3.8/site-packages/pyflink/lib
Now we need to provide a file://
path to the iceberg-flink-runtime
jar, which we can either get by building the project
and looking at <iceberg-root-dir>/flink-runtime/build/libs
, or downloading it from the Apache official repository.
Third-party libs can be added to pyflink
via env.add_jars("file:///my/jar/path/connector.jar")
/ table_env.get_config().get_configuration().set_string("pipeline.jars", "file:///my/jar/path/connector.jar")
, which is also mentioned in the official docs.
In our example we're using env.add_jars(..)
as shown below:
import os
from pyflink.datastream import StreamExecutionEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
iceberg_flink_runtime_jar = os.path.join(os.getcwd(), "iceberg-flink-runtime-{{% icebergVersion %}}.jar")
env.add_jars("file://{}".format(iceberg_flink_runtime_jar))
Once we reached this point, we can then create a StreamTableEnvironment
and execute Flink SQL statements.
The below example shows how to create a custom catalog via the Python Table API:
from pyflink.table import StreamTableEnvironment
table_env = StreamTableEnvironment.create(env)
table_env.execute_sql("CREATE CATALOG my_catalog WITH ("
"'type'='iceberg', "
"'catalog-impl'='com.my.custom.CatalogImpl', "
"'my-additional-catalog-config'='my-value')")
For more details, please refer to the Python Table API.
Flink 1.11 support to create catalogs by using flink sql.
A catalog is created and named by executing the following query (replace <catalog_name>
with your catalog name and
<config_key>
=<config_value>
with catalog implementation config):
CREATE CATALOG <catalog_name> WITH (
'type'='iceberg',
`<config_key>`=`<config_value>`
);
The following properties can be set globally and are not limited to a specific catalog implementation:
type
: Must beiceberg
. (required)catalog-type
:hive
orhadoop
for built-in catalogs, or left unset for custom catalog implementations using catalog-impl. (Optional)catalog-impl
: The fully-qualified class name of a custom catalog implementation. Must be set ifcatalog-type
is unset. (Optional)property-version
: Version number to describe the property version. This property can be used for backwards compatibility in case the property format changes. The current property version is1
. (Optional)cache-enabled
: Whether to enable catalog cache, default value istrue
. (Optional)cache.expiration-interval-ms
: How long catalog entries are locally cached, in milliseconds; negative values like-1
will disable expiration, value 0 is not allowed to set. default value is-1
. (Optional)
This creates an iceberg catalog named hive_catalog
that can be configured using 'catalog-type'='hive'
, which loads tables from a hive metastore:
CREATE CATALOG hive_catalog WITH (
'type'='iceberg',
'catalog-type'='hive',
'uri'='thrift://localhost:9083',
'clients'='5',
'property-version'='1',
'warehouse'='hdfs://nn:8020/warehouse/path'
);
The following properties can be set if using the Hive catalog:
uri
: The Hive metastore's thrift URI. (Required)clients
: The Hive metastore client pool size, default value is 2. (Optional)warehouse
: The Hive warehouse location, users should specify this path if neither set thehive-conf-dir
to specify a location containing ahive-site.xml
configuration file nor add a correcthive-site.xml
to classpath.hive-conf-dir
: Path to a directory containing ahive-site.xml
configuration file which will be used to provide custom Hive configuration values. The value ofhive.metastore.warehouse.dir
from<hive-conf-dir>/hive-site.xml
(or hive configure file from classpath) will be overwrote with thewarehouse
value if setting bothhive-conf-dir
andwarehouse
when creating iceberg catalog.hadoop-conf-dir
: Path to a directory containingcore-site.xml
andhdfs-site.xml
configuration files which will be used to provide custom Hadoop configuration values.
Iceberg also supports a directory-based catalog in HDFS that can be configured using 'catalog-type'='hadoop'
:
CREATE CATALOG hadoop_catalog WITH (
'type'='iceberg',
'catalog-type'='hadoop',
'warehouse'='hdfs://nn:8020/warehouse/path',
'property-version'='1'
);
The following properties can be set if using the Hadoop catalog:
warehouse
: The HDFS directory to store metadata files and data files. (Required)
We could execute the sql command USE CATALOG hive_catalog
to set the current catalog.
Flink also supports loading a custom Iceberg Catalog
implementation by specifying the catalog-impl
property. Here is an example:
CREATE CATALOG my_catalog WITH (
'type'='iceberg',
'catalog-impl'='com.my.custom.CatalogImpl',
'my-additional-catalog-config'='my-value'
);
Catalogs can be registered in sql-client-defaults.yaml
before starting the SQL client. Here is an example:
catalogs:
- name: my_catalog
type: iceberg
catalog-type: hadoop
warehouse: hdfs://nn:8020/warehouse/path
Since the sql-client-defaults.yaml
file was removed in flink 1.14, SQL Client supports the -i startup option to execute an initialization SQL file to setup environment when starting up the SQL Client.
An example of such a file is presented below.
-- define available catalogs
CREATE CATALOG hive_catalog WITH (
'type'='iceberg',
'catalog-type'='hive',
'uri'='thrift://localhost:9083',
'warehouse'='hdfs://nn:8020/warehouse/path'
);
USE CATALOG hive_catalog;
using -i <init.sql> option to initialize SQL Client session
/path/to/bin/sql-client.sh -i /path/to/init.sql
By default, iceberg will use the default
database in flink. Using the following example to create a separate database if we don't want to create tables under the default
database:
CREATE DATABASE iceberg_db;
USE iceberg_db;
CREATE TABLE `hive_catalog`.`default`.`sample` (
id BIGINT COMMENT 'unique id',
data STRING
);
Table create commands support the most commonly used flink create clauses now, including:
PARTITION BY (column1, column2, ...)
to configure partitioning, apache flink does not yet support hidden partitioning.COMMENT 'table document'
to set a table description.WITH ('key'='value', ...)
to set table configuration which will be stored in apache iceberg table properties.
Currently, it does not support computed column, primary key and watermark definition etc.
To create a partition table, use PARTITIONED BY
:
CREATE TABLE `hive_catalog`.`default`.`sample` (
id BIGINT COMMENT 'unique id',
data STRING
) PARTITIONED BY (data);
Apache Iceberg support hidden partition but apache flink don't support partitioning by a function on columns, so we've no way to support hidden partition in flink DDL now, we will improve apache flink DDL in future.
To create a table with the same schema, partitioning, and table properties as another table, use CREATE TABLE LIKE
.
CREATE TABLE `hive_catalog`.`default`.`sample` (
id BIGINT COMMENT 'unique id',
data STRING
);
CREATE TABLE `hive_catalog`.`default`.`sample_like` LIKE `hive_catalog`.`default`.`sample`;
For more details, refer to the Flink CREATE TABLE
documentation.
Iceberg only support altering table properties in flink 1.11 now.
ALTER TABLE `hive_catalog`.`default`.`sample` SET ('write.format.default'='avro')
ALTER TABLE `hive_catalog`.`default`.`sample` RENAME TO `hive_catalog`.`default`.`new_sample`;
To delete a table, run:
DROP TABLE `hive_catalog`.`default`.`sample`;
Iceberg support both streaming and batch read in flink now. we could execute the following sql command to switch the execute type from 'streaming' mode to 'batch' mode, and vice versa:
-- Execute the flink job in streaming mode for current session context
SET execution.runtime-mode = streaming;
-- Execute the flink job in batch mode for current session context
SET execution.runtime-mode = batch;
If want to check all the rows in iceberg table by submitting a flink batch job, you could execute the following sentences:
-- Execute the flink job in batch mode for current session context
SET execution.runtime-mode = batch;
SELECT * FROM sample ;
Iceberg supports processing incremental data in flink streaming jobs which starts from a historical snapshot-id:
-- Submit the flink job in streaming mode for current session.
SET execution.runtime-mode = streaming;
-- Enable this switch because streaming read SQL will provide few job options in flink SQL hint options.
SET table.dynamic-table-options.enabled=true;
-- Read all the records from the iceberg current snapshot, and then read incremental data starting from that snapshot.
SELECT * FROM sample /*+ OPTIONS('streaming'='true', 'monitor-interval'='1s')*/ ;
-- Read all incremental data starting from the snapshot-id '3821550127947089987' (records from this snapshot will be excluded).
SELECT * FROM sample /*+ OPTIONS('streaming'='true', 'monitor-interval'='1s', 'start-snapshot-id'='3821550127947089987')*/ ;
There are some options that could be set in flink SQL hint options for streaming job, see read options for details.
Here are the SQL settings for the FLIP-27 source, which is only available for Flink 1.14 or above. All other SQL settings and options documented above are applicable to the FLIP-27 source.
-- Opt in the FLIP-27 source. Default is false.
SET table.exec.iceberg.use-flip27-source = true;
Iceberg support both INSERT INTO
and INSERT OVERWRITE
in flink 1.11 now.
To append new data to a table with a flink streaming job, use INSERT INTO
:
INSERT INTO `hive_catalog`.`default`.`sample` VALUES (1, 'a');
INSERT INTO `hive_catalog`.`default`.`sample` SELECT id, data from other_kafka_table;
To replace data in the table with the result of a query, use INSERT OVERWRITE
in batch job (flink streaming job does not support INSERT OVERWRITE
). Overwrites are atomic operations for Iceberg tables.
Partitions that have rows produced by the SELECT query will be replaced, for example:
INSERT OVERWRITE sample VALUES (1, 'a');
Iceberg also support overwriting given partitions by the select
values:
INSERT OVERWRITE `hive_catalog`.`default`.`sample` PARTITION(data='a') SELECT 6;
For a partitioned iceberg table, when all the partition columns are set a value in PARTITION
clause, it is inserting into a static partition, otherwise if partial partition columns (prefix part of all partition columns) are set a value in PARTITION
clause, it is writing the query result into a dynamic partition.
For an unpartitioned iceberg table, its data will be completely overwritten by INSERT OVERWRITE
.
Iceberg supports UPSERT
based on the primary key when writing data into v2 table format. There are two ways to enable upsert.
- Enable the
UPSERT
mode as table-level propertywrite.upsert.enabled
. Here is an example SQL statement to set the table property when creating a table. It would be applied for all write paths to this table (batch or streaming) unless overwritten by write options as described later.
CREATE TABLE `hive_catalog`.`default`.`sample` (
`id` INT UNIQUE COMMENT 'unique id',
`data` STRING NOT NULL,
PRIMARY KEY(`id`) NOT ENFORCED
) with ('format-version'='2', 'write.upsert.enabled'='true');
- Enabling
UPSERT
mode usingupsert-enabled
in the write options provides more flexibility than a table level config. Note that you still need to use v2 table format and specify the primary key when creating the table.
INSERT INTO tableName /*+ OPTIONS('upsert-enabled'='true') */
...
{{< hint info >}} OVERWRITE and UPSERT can't be set together. In UPSERT mode, if the table is partitioned, the partition fields should be included in equality fields. {{< /hint >}}
Iceberg support streaming or batch read in Java API now.
This example will read all records from iceberg table and then print to the stdout console in flink batch job:
StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironment();
TableLoader tableLoader = TableLoader.fromHadoopTable("hdfs://nn:8020/warehouse/path");
DataStream<RowData> batch = FlinkSource.forRowData()
.env(env)
.tableLoader(tableLoader)
.streaming(false)
.build();
// Print all records to stdout.
batch.print();
// Submit and execute this batch read job.
env.execute("Test Iceberg Batch Read");
This example will read incremental records which start from snapshot-id '3821550127947089987' and print to stdout console in flink streaming job:
StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironment();
TableLoader tableLoader = TableLoader.fromHadoopTable("hdfs://nn:8020/warehouse/path");
DataStream<RowData> stream = FlinkSource.forRowData()
.env(env)
.tableLoader(tableLoader)
.streaming(true)
.startSnapshotId(3821550127947089987L)
.build();
// Print all records to stdout.
stream.print();
// Submit and execute this streaming read job.
env.execute("Test Iceberg Streaming Read");
There are other options that we could set by Java API, please see the [FlinkSource#Builder](../../../javadoc/{{% icebergVersion %}}/org/apache/iceberg/flink/source/FlinkSource.html).
FLIP-27 source interface
was introduced in Flink 1.12. It aims to solve several shortcomings of the old SourceFunction
streaming source interface. It also unifies the source interfaces for both batch and streaming executions.
Most source connectors (like Kafka, file) in Flink repo have migrated to the FLIP-27 interface.
Flink is planning to deprecate the old SourceFunction
interface in the near future.
A FLIP-27 based Flink IcebergSource
is added in iceberg-flink
module for Flink 1.14 or above.
The FLIP-27 IcebergSource
is currently an experimental feature.
This example will read all records from iceberg table and then print to the stdout console in flink batch job:
StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironment();
TableLoader tableLoader = TableLoader.fromHadoopTable("hdfs://nn:8020/warehouse/path");
IcebergSource<RowData> source = IcebergSource.forRowData()
.tableLoader(tableLoader)
.assignerFactory(new SimpleSplitAssignerFactory())
.build();
DataStream<RowData> batch = env.fromSource(
source,
WatermarkStrategy.noWatermarks(),
"My Iceberg Source",
TypeInformation.of(RowData.class));
// Print all records to stdout.
batch.print();
// Submit and execute this batch read job.
env.execute("Test Iceberg Batch Read");
This example will start the streaming read from the latest table snapshot (inclusive). Every 60s, it polls Iceberg table to discover new append-only snapshots. CDC read is not supported yet.
StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironment();
TableLoader tableLoader = TableLoader.fromHadoopTable("hdfs://nn:8020/warehouse/path");
IcebergSource source = IcebergSource.forRowData()
.tableLoader(tableLoader)
.assignerFactory(new SimpleSplitAssignerFactory())
.streaming(true)
.streamingStartingStrategy(StreamingStartingStrategy.INCREMENTAL_FROM_LATEST_SNAPSHOT)
.monitorInterval(Duration.ofSeconds(60))
.build()
DataStream<RowData> stream = env.fromSource(
source,
WatermarkStrategy.noWatermarks(),
"My Iceberg Source",
TypeInformation.of(RowData.class));
// Print all records to stdout.
stream.print();
// Submit and execute this streaming read job.
env.execute("Test Iceberg Streaming Read");
There are other options that we could set by Java API, please see the [IcebergSource#Builder](../../../javadoc/{{% icebergVersion %}}/org/apache/iceberg/flink/source/IcebergSource.html).
FLIP-27 Iceberg source provides AvroGenericRecordReaderFunction
that converts
Flink RowData
Avro GenericRecord
. You can use the convert to read from
Iceberg table as Avro GenericRecord DataStream.
Please make sure flink-avro
jar is included in the classpath.
Also iceberg-flink-runtime
shaded bundle jar can't be used
because the runtime jar shades the avro package.
Please use non-shaded iceberg-flink
jar instead.
TableLoader tableLoader = ...;
Table table;
try (TableLoader loader = tableLoader) {
loader.open();
table = loader.loadTable();
}
AvroGenericRecordReaderFunction readerFunction = AvroGenericRecordReaderFunction.fromTable(table);
IcebergSource<GenericRecord> source =
IcebergSource.<GenericRecord>builder()
.tableLoader(tableLoader)
.readerFunction(readerFunction)
.assignerFactory(new SimpleSplitAssignerFactory())
...
.build();
DataStream<Row> stream = env.fromSource(source, WatermarkStrategy.noWatermarks(),
"Iceberg Source as Avro GenericRecord", new GenericRecordAvroTypeInfo(avroSchema));
Iceberg support writing to iceberg table from different DataStream input.
we have supported writing DataStream<RowData>
and DataStream<Row>
to the sink iceberg table natively.
StreamExecutionEnvironment env = ...;
DataStream<RowData> input = ... ;
Configuration hadoopConf = new Configuration();
TableLoader tableLoader = TableLoader.fromHadoopTable("hdfs://nn:8020/warehouse/path", hadoopConf);
FlinkSink.forRowData(input)
.tableLoader(tableLoader)
.append();
env.execute("Test Iceberg DataStream");
The iceberg API also allows users to write generic DataStream<T>
to iceberg table, more example could be found in this unit test.
To overwrite the data in existing iceberg table dynamically, we could set the overwrite
flag in FlinkSink builder.
StreamExecutionEnvironment env = ...;
DataStream<RowData> input = ... ;
Configuration hadoopConf = new Configuration();
TableLoader tableLoader = TableLoader.fromHadoopTable("hdfs://nn:8020/warehouse/path", hadoopConf);
FlinkSink.forRowData(input)
.tableLoader(tableLoader)
.overwrite(true)
.append();
env.execute("Test Iceberg DataStream");
To upsert the data in existing iceberg table, we could set the upsert
flag in FlinkSink builder. The table must use v2 table format and have a primary key.
StreamExecutionEnvironment env = ...;
DataStream<RowData> input = ... ;
Configuration hadoopConf = new Configuration();
TableLoader tableLoader = TableLoader.fromHadoopTable("hdfs://nn:8020/warehouse/path", hadoopConf);
FlinkSink.forRowData(input)
.tableLoader(tableLoader)
.upsert(true)
.append();
env.execute("Test Iceberg DataStream");
{{< hint info >}} OVERWRITE and UPSERT can't be set together. In UPSERT mode, if the table is partitioned, the partition fields should be included in equality fields. {{< /hint >}}
Flink Iceberg sink provides AvroGenericRecordToRowDataMapper
that converts
Avro GenericRecord
to Flink RowData
. You can use the mapper to write
Avro GenericRecord DataStream to Iceberg.
Please make sure flink-avro
jar is included in the classpath.
Also iceberg-flink-runtime
shaded bundle jar can't be used
because the runtime jar shades the avro package.
Please use non-shaded iceberg-flink
jar instead.
DataStream<org.apache.avro.generic.GenericRecord> dataStream = ...;
Schema icebergSchema = table.schema();
// if the Iceberg table schema contains time fields, we can't use
// Avro schema converted from Iceberg schema via AvroSchemaUtil.
// Instead, use the Avro schema defined directly.
// See AvroGenericRecordToRowDataMapper Javadoc for more details.
org.apache.avro.Schema avroSchema = AvroSchemaUtil.convert(icebergSchema, table.name());
GenericRecordAvroTypeInfo avroTypeInfo = new GenericRecordAvroTypeInfo(avroSchema);
RowType rowType = FlinkSchemaUtil.convert(icebergSchema);
FlinkSink.builderFor(
dataStream,
AvroGenericRecordToRowDataMapper.forAvroSchema(avroSchema),
FlinkCompatibilityUtil.toTypeInfo(rowType))
.table(table)
.tableLoader(tableLoader)
.append();
The following Flink metrics are provided by the Flink Iceberg sink.
Parallel writer metrics are added under the sub group of IcebergStreamWriter
.
They should have the following key-value tags.
- table: full table name (like iceberg.my_db.my_table)
- subtask_index: writer subtask index starting from 0
Metric name | Metric type | Description |
---|---|---|
lastFlushDurationMs | Gague | The duration (in milli) that writer subtasks take to flush and upload the files during checkpoint. |
flushedDataFiles | Counter | Number of data files flushed and uploaded. |
flushedDeleteFiles | Counter | Number of delete files flushed and uploaded. |
flushedReferencedDataFiles | Counter | Number of data files referenced by the flushed delete files. |
dataFilesSizeHistogram | Histogram | Histogram distribution of data file sizes (in bytes). |
deleteFilesSizeHistogram | Histogram | Histogram distribution of delete file sizes (in bytes). |
Committer metrics are added under the sub group of IcebergFilesCommitter
.
They should have the following key-value tags.
- table: full table name (like iceberg.my_db.my_table)
Metric name | Metric type | Description |
---|---|---|
lastCheckpointDurationMs | Gague | The duration (in milli) that the committer operator checkpoints its state. |
lastCommitDurationMs | Gague | The duration (in milli) that the Iceberg table commit takes. |
committedDataFilesCount | Counter | Number of data files committed. |
committedDataFilesRecordCount | Counter | Number of records contained in the committed data files. |
committedDataFilesByteCount | Counter | Number of bytes contained in the committed data files. |
committedDeleteFilesCount | Counter | Number of delete files committed. |
committedDeleteFilesRecordCount | Counter | Number of records contained in the committed delete files. |
committedDeleteFilesByteCount | Counter | Number of bytes contained in the committed delete files. |
elapsedSecondsSinceLastSuccessfulCommit | Gague | Elapsed time (in seconds) since last successful Iceberg commit. |
elapsedSecondsSinceLastSuccessfulCommit
is an ideal alerting metric
to detect failed or missing Iceberg commits.
- Iceberg commit happened after successful Flink checkpoint in the
notifyCheckpointComplete
callback. It could happen that Iceberg commits failed (for whatever reason), while Flink checkpoints succeeding. - It could also happen that
notifyCheckpointComplete
wasn't triggered (for whatever bug). As a result, there won't be any Iceberg commits attempted.
If the checkpoint interval (and expected Iceberg commit interval) is 5 minutes,
we can set up alert with rule like elapsedSecondsSinceLastSuccessfulCommit > 60 minutes
.
Then we can detect failed or missing Iceberg commits in 60 minutes.
Flink read options are passed when configuring the Flink IcebergSource, like this:
IcebergSource.forRowData()
.tableLoader(TableLoader.fromCatalog(...))
.assignerFactory(new SimpleSplitAssignerFactory())
.streaming(true)
.streamingStartingStrategy(StreamingStartingStrategy.INCREMENTAL_FROM_LATEST_SNAPSHOT)
.startSnapshotId(3821550127947089987L)
.monitorInterval(Duration.ofMillis(10L)) // or .set("monitor-interval", "10s") \ set(FlinkReadOptions.MONITOR_INTERVAL, "10s")
.build()
For Flink SQL, read options can be passed in via SQL hints like this:
SELECT * FROM tableName /*+ OPTIONS('monitor-interval'='10s') */
...
Options can be passed in via Flink configuration, which will be applied to current session. Note that not all options support this mode.
env.getConfig()
.getConfiguration()
.set(FlinkReadOptions.SPLIT_FILE_OPEN_COST_OPTION, 1000L);
...
Read option
has the highest priority, followed by Flink configuration
and then Table property
.
Read option | Flink configuration | Table property | Default | Description |
---|---|---|---|---|
snapshot-id | N/A | N/A | null | For time travel in batch mode. Read data from the specified snapshot-id. |
case-sensitive | connector.iceberg.case-sensitive | N/A | false | If true, match column name in a case sensitive way. |
as-of-timestamp | N/A | N/A | null | For time travel in batch mode. Read data from the most recent snapshot as of the given time in milliseconds. |
starting-strategy | connector.iceberg.starting-strategy | N/A | INCREMENTAL_FROM_LATEST_SNAPSHOT | Starting strategy for streaming execution. TABLE_SCAN_THEN_INCREMENTAL: Do a regular table scan then switch to the incremental mode. The incremental mode starts from the current snapshot exclusive. INCREMENTAL_FROM_LATEST_SNAPSHOT: Start incremental mode from the latest snapshot inclusive. If it is an empty map, all future append snapshots should be discovered. INCREMENTAL_FROM_EARLIEST_SNAPSHOT: Start incremental mode from the earliest snapshot inclusive. If it is an empty map, all future append snapshots should be discovered. INCREMENTAL_FROM_SNAPSHOT_ID: Start incremental mode from a snapshot with a specific id inclusive. INCREMENTAL_FROM_SNAPSHOT_TIMESTAMP: Start incremental mode from a snapshot with a specific timestamp inclusive. If the timestamp is between two snapshots, it should start from the snapshot after the timestamp. Just for FIP27 Source. |
start-snapshot-timestamp | N/A | N/A | null | Start to read data from the most recent snapshot as of the given time in milliseconds. |
start-snapshot-id | N/A | N/A | null | Start to read data from the specified snapshot-id. |
end-snapshot-id | N/A | N/A | The latest snapshot id | Specifies the end snapshot. |
split-size | connector.iceberg.split-size | read.split.target-size | 128 MB | Target size when combining input splits. |
split-lookback | connector.iceberg.split-file-open-cost | read.split.planning-lookback | 10 | Number of bins to consider when combining input splits. |
split-file-open-cost | connector.iceberg.split-file-open-cost | read.split.open-file-cost | 4MB | The estimated cost to open a file, used as a minimum weight when combining splits. |
streaming | connector.iceberg.streaming | N/A | false | Sets whether the current task runs in streaming or batch mode. |
monitor-interval | connector.iceberg.monitor-interval | N/A | 60s | Monitor interval to discover splits from new snapshots. Applicable only for streaming read. |
include-column-stats | connector.iceberg.include-column-stats | N/A | false | Create a new scan from this that loads the column stats with each data file. Column stats include: value count, null value count, lower bounds, and upper bounds. |
max-planning-snapshot-count | connector.iceberg.max-planning-snapshot-count | N/A | Integer.MAX_VALUE | Max number of snapshots limited per split enumeration. Applicable only to streaming read. |
limit | connector.iceberg.limit | N/A | -1 | Limited output number of rows. |
Flink write options are passed when configuring the FlinkSink, like this:
FlinkSink.Builder builder = FlinkSink.forRow(dataStream, SimpleDataUtil.FLINK_SCHEMA)
.table(table)
.tableLoader(tableLoader)
.set("write-format", "orc")
.set(FlinkWriteOptions.OVERWRITE_MODE, "true");
For Flink SQL, write options can be passed in via SQL hints like this:
INSERT INTO tableName /*+ OPTIONS('upsert-enabled'='true') */
...
Flink option | Default | Description |
---|---|---|
write-format | Table write.format.default | File format to use for this write operation; parquet, avro, or orc |
target-file-size-bytes | As per table property | Overrides this table's write.target-file-size-bytes |
upsert-enabled | Table write.upsert.enabled | Overrides this table's write.upsert.enabled |
overwrite-enabled | false | Overwrite the table's data, overwrite mode shouldn't be enable when configuring to use UPSERT data stream. |
distribution-mode | Table write.distribution-mode | Overrides this table's write.distribution-mode |
compression-codec | Table write.(fileformat).compression-codec | Overrides this table's compression codec for this write |
compression-level | Table write.(fileformat).compression-level | Overrides this table's compression level for Parquet and Avro tables for this write |
compression-strategy | Table write.orc.compression-strategy | Overrides this table's compression strategy for ORC tables for this write |
To inspect a table's history, snapshots, and other metadata, Iceberg supports metadata tables.
Metadata tables are identified by adding the metadata table name after the original table name. For example, history for db.table
is read using db.table$history
.
To show table history:
SELECT * FROM prod.db.table$history;
made_current_at | snapshot_id | parent_id | is_current_ancestor |
---|---|---|---|
2019-02-08 03:29:51.215 | 5781947118336215154 | NULL | true |
2019-02-08 03:47:55.948 | 5179299526185056830 | 5781947118336215154 | true |
2019-02-09 16:24:30.13 | 296410040247533544 | 5179299526185056830 | false |
2019-02-09 16:32:47.336 | 2999875608062437330 | 5179299526185056830 | true |
2019-02-09 19:42:03.919 | 8924558786060583479 | 2999875608062437330 | true |
2019-02-09 19:49:16.343 | 6536733823181975045 | 8924558786060583479 | true |
{{< hint info >}} This shows a commit that was rolled back. In this example, snapshot 296410040247533544 and 2999875608062437330 have the same parent snapshot 5179299526185056830. Snapshot 296410040247533544 was rolled back and is not an ancestor of the current table state. {{< /hint >}}
To show table metadata log entries:
SELECT * from prod.db.table$metadata_log_entries;
timestamp | file | latest_snapshot_id | latest_schema_id | latest_sequence_number |
---|---|---|---|---|
2022-07-28 10:43:52.93 | s3://.../table/metadata/00000-9441e604-b3c2-498a-a45a-6320e8ab9006.metadata.json | null | null | null |
2022-07-28 10:43:57.487 | s3://.../table/metadata/00001-f30823df-b745-4a0a-b293-7532e0c99986.metadata.json | 170260833677645300 | 0 | 1 |
2022-07-28 10:43:58.25 | s3://.../table/metadata/00002-2cc2837a-02dc-4687-acc1-b4d86ea486f4.metadata.json | 958906493976709774 | 0 | 2 |
To show the valid snapshots for a table:
SELECT * FROM prod.db.table$snapshots;
committed_at | snapshot_id | parent_id | operation | manifest_list | summary |
---|---|---|---|---|---|
2019-02-08 03:29:51.215 | 57897183625154 | null | append | s3://.../table/metadata/snap-57897183625154-1.avro | { added-records -> 2478404, total-records -> 2478404, added-data-files -> 438, total-data-files -> 438, flink.job-id -> 2e274eecb503d85369fb390e8956c813 } |
You can also join snapshots to table history. For example, this query will show table history, with the application ID that wrote each snapshot:
select
h.made_current_at,
s.operation,
h.snapshot_id,
h.is_current_ancestor,
s.summary['flink.job-id']
from prod.db.table$history h
join prod.db.table$snapshots s
on h.snapshot_id = s.snapshot_id
order by made_current_at
made_current_at | operation | snapshot_id | is_current_ancestor | summary[flink.job-id] |
---|---|---|---|---|
2019-02-08 03:29:51.215 | append | 57897183625154 | true | 2e274eecb503d85369fb390e8956c813 |
To show a table's current data files:
SELECT * FROM prod.db.table$files;
content | file_path | file_format | spec_id | partition | record_count | file_size_in_bytes | column_sizes | value_counts | null_value_counts | nan_value_counts | lower_bounds | upper_bounds | key_metadata | split_offsets | equality_ids | sort_order_id |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | s3:/.../table/data/00000-3-8d6d60e8-d427-4809-bcf0-f5d45a4aad96.parquet | PARQUET | 0 | {1999-01-01, 01} | 1 | 597 | [1 -> 90, 2 -> 62] | [1 -> 1, 2 -> 1] | [1 -> 0, 2 -> 0] | [] | [1 -> , 2 -> c] | [1 -> , 2 -> c] | null | [4] | null | null |
0 | s3:/.../table/data/00001-4-8d6d60e8-d427-4809-bcf0-f5d45a4aad96.parquet | PARQUET | 0 | {1999-01-01, 02} | 1 | 597 | [1 -> 90, 2 -> 62] | [1 -> 1, 2 -> 1] | [1 -> 0, 2 -> 0] | [] | [1 -> , 2 -> b] | [1 -> , 2 -> b] | null | [4] | null | null |
0 | s3:/.../table/data/00002-5-8d6d60e8-d427-4809-bcf0-f5d45a4aad96.parquet | PARQUET | 0 | {1999-01-01, 03} | 1 | 597 | [1 -> 90, 2 -> 62] | [1 -> 1, 2 -> 1] | [1 -> 0, 2 -> 0] | [] | [1 -> , 2 -> a] | [1 -> , 2 -> a] | null | [4] | null | null |
To show a table's current file manifests:
SELECT * FROM prod.db.table$manifests;
path | length | partition_spec_id | added_snapshot_id | added_data_files_count | existing_data_files_count | deleted_data_files_count | partition_summaries |
---|---|---|---|---|---|---|---|
s3://.../table/metadata/45b5290b-ee61-4788-b324-b1e2735c0e10-m0.avro | 4479 | 0 | 6668963634911763636 | 8 | 0 | 0 | [[false,null,2019-05-13,2019-05-15]] |
Note:
- Fields within
partition_summaries
column of the manifests table correspond tofield_summary
structs within manifest list, with the following order:contains_null
contains_nan
lower_bound
upper_bound
contains_nan
could return null, which indicates that this information is not available from the file's metadata. This usually occurs when reading from V1 table, wherecontains_nan
is not populated.
To show a table's current partitions:
SELECT * FROM prod.db.table$partitions;
partition | record_count | file_count | spec_id |
---|---|---|---|
{20211001, 11} | 1 | 1 | 0 |
{20211002, 11} | 1 | 1 | 0 |
{20211001, 10} | 1 | 1 | 0 |
{20211002, 10} | 1 | 1 | 0 |
Note: For unpartitioned tables, the partitions table will contain only the record_count and file_count columns.
These tables are unions of the metadata tables specific to the current snapshot, and return metadata across all snapshots.
{{< hint danger >}} The "all" metadata tables may produce more than one row per data file or manifest file because metadata files may be part of more than one table snapshot. {{< /hint >}}
To show all of the table's data files and each file's metadata:
SELECT * FROM prod.db.table$all_data_files;
content | file_path | file_format | partition | record_count | file_size_in_bytes | column_sizes | value_counts | null_value_counts | nan_value_counts | lower_bounds | upper_bounds | key_metadata | split_offsets | equality_ids | sort_order_id |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | s3://.../dt=20210102/00000-0-756e2512-49ae-45bb-aae3-c0ca475e7879-00001.parquet | PARQUET | {20210102} | 14 | 2444 | {1 -> 94, 2 -> 17} | {1 -> 14, 2 -> 14} | {1 -> 0, 2 -> 0} | {} | {1 -> 1, 2 -> 20210102} | {1 -> 2, 2 -> 20210102} | null | [4] | null | 0 |
0 | s3://.../dt=20210103/00000-0-26222098-032f-472b-8ea5-651a55b21210-00001.parquet | PARQUET | {20210103} | 14 | 2444 | {1 -> 94, 2 -> 17} | {1 -> 14, 2 -> 14} | {1 -> 0, 2 -> 0} | {} | {1 -> 1, 2 -> 20210103} | {1 -> 3, 2 -> 20210103} | null | [4] | null | 0 |
0 | s3://.../dt=20210104/00000-0-a3bb1927-88eb-4f1c-bc6e-19076b0d952e-00001.parquet | PARQUET | {20210104} | 14 | 2444 | {1 -> 94, 2 -> 17} | {1 -> 14, 2 -> 14} | {1 -> 0, 2 -> 0} | {} | {1 -> 1, 2 -> 20210104} | {1 -> 3, 2 -> 20210104} | null | [4] | null | 0 |
To show all of the table's manifest files:
SELECT * FROM prod.db.table$all_manifests;
path | length | partition_spec_id | added_snapshot_id | added_data_files_count | existing_data_files_count | deleted_data_files_count | partition_summaries |
---|---|---|---|---|---|---|---|
s3://.../metadata/a85f78c5-3222-4b37-b7e4-faf944425d48-m0.avro | 6376 | 0 | 6272782676904868561 | 2 | 0 | 0 | [{false, false, 20210101, 20210101}] |
Note:
- Fields within
partition_summaries
column of the manifests table correspond tofield_summary
structs within manifest list, with the following order:contains_null
contains_nan
lower_bound
upper_bound
contains_nan
could return null, which indicates that this information is not available from the file's metadata. This usually occurs when reading from V1 table, wherecontains_nan
is not populated.
To show a table's known snapshot references:
SELECT * FROM prod.db.table$refs;
name | type | snapshot_id | max_reference_age_in_ms | min_snapshots_to_keep | max_snapshot_age_in_ms |
---|---|---|---|---|---|
main | BRANCH | 4686954189838128572 | 10 | 20 | 30 |
testTag | TAG | 4686954189838128572 | 10 | null | null |
Iceberg provides API to rewrite small files into large files by submitting flink batch job. The behavior of this flink action is the same as the spark's rewriteDataFiles.
import org.apache.iceberg.flink.actions.Actions;
TableLoader tableLoader = TableLoader.fromHadoopTable("hdfs://nn:8020/warehouse/path");
Table table = tableLoader.loadTable();
RewriteDataFilesActionResult result = Actions.forTable(table)
.rewriteDataFiles()
.execute();
For more doc about options of the rewrite files action, please see [RewriteDataFilesAction](../../../javadoc/{{% icebergVersion %}}/org/apache/iceberg/flink/actions/RewriteDataFilesAction.html)
Iceberg's integration for Flink automatically converts between Flink and Iceberg types. When writing to a table with types that are not supported by Flink, like UUID, Iceberg will accept and convert values from the Flink type.
Flink types are converted to Iceberg types according to the following table:
Flink | Iceberg | Notes |
---|---|---|
boolean | boolean | |
tinyint | integer | |
smallint | integer | |
integer | integer | |
bigint | long | |
float | float | |
double | double | |
char | string | |
varchar | string | |
string | string | |
binary | binary | |
varbinary | fixed | |
decimal | decimal | |
date | date | |
time | time | |
timestamp | timestamp without timezone | |
timestamp_ltz | timestamp with timezone | |
array | list | |
map | map | |
multiset | map | |
row | struct | |
raw | Not supported | |
interval | Not supported | |
structured | Not supported | |
timestamp with zone | Not supported | |
distinct | Not supported | |
null | Not supported | |
symbol | Not supported | |
logical | Not supported |
Iceberg types are converted to Flink types according to the following table:
Iceberg | Flink |
---|---|
boolean | boolean |
struct | row |
list | array |
map | map |
integer | integer |
long | bigint |
float | float |
double | double |
date | date |
time | time |
timestamp without timezone | timestamp(6) |
timestamp with timezone | timestamp_ltz(6) |
string | varchar(2147483647) |
uuid | binary(16) |
fixed(N) | binary(N) |
binary | varbinary(2147483647) |
decimal(P, S) | decimal(P, S) |
There are some features that we do not yet support in the current flink iceberg integration work:
- Don't support creating iceberg table with hidden partitioning. Discussion in flink mail list.
- Don't support creating iceberg table with computed column.
- Don't support creating iceberg table with watermark.
- Don't support adding columns, removing columns, renaming columns, changing columns. FLINK-19062 is tracking this.