-
Notifications
You must be signed in to change notification settings - Fork 10
/
utils.py
126 lines (108 loc) · 4.33 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from scipy import interpolate
from skimage import io
import random
import sys
def bilinear_sampler(img, coords, mode='bilinear', mask=False):
""" Wrapper for grid_sample, uses pixel coordinates """
H, W = img.shape[-2:]
xgrid, ygrid = coords.split([1,1], dim=-1)
xgrid = 2*xgrid/(W-1) - 1
ygrid = 2*ygrid/(H-1) - 1
grid = torch.cat([xgrid, ygrid], dim=-1)
img = F.grid_sample(img, grid, align_corners=True)
if mask:
mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
return img, mask.float()
return img
def coords_grid(batch, ht, wd):
coords = torch.meshgrid(torch.arange(ht), torch.arange(wd))
coords = torch.stack(coords[::-1], dim=0).float()
return coords[None].expand(batch, -1, -1, -1)
def save_img(img, path):
npimg = img.detach().cpu().numpy()
npimg = np.transpose(npimg, (1, 2, 0))
npimg = npimg.astype(np.uint8)
io.imsave(path, npimg)
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.cuda.manual_seed(seed)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def warp(x, flo):
"""
warp an image/tensor (im2) back to im1, according to the optical flow
x: [B, C, H, W] (im2)
flo: [B, 2, H, W] flow
"""
B, C, H, W = x.size()
# mesh grid
xx = torch.arange(0, W).view(1, -1).repeat(H, 1)
yy = torch.arange(0, H).view(-1, 1).repeat(1, W)
xx = xx.view(1, 1, H, W).repeat(B, 1, 1, 1)
yy = yy.view(1, 1, H, W).repeat(B, 1, 1, 1)
grid = torch.cat((xx, yy), 1).float()
if x.is_cuda:
grid = grid.to(x.device)
vgrid = torch.autograd.Variable(grid) + flo
# scale grid to [-1,1]
vgrid[:, 0, :, :] = 2.0 * vgrid[:, 0, :, :] / max(W - 1, 1) - 1.0
vgrid[:, 1, :, :] = 2.0 * vgrid[:, 1, :, :] / max(H - 1, 1) - 1.0
vgrid = vgrid.permute(0, 2, 3, 1)
output = nn.functional.grid_sample(x, vgrid, align_corners=True)
mask = torch.autograd.Variable(torch.ones(x.size())).to(x.device)
mask = nn.functional.grid_sample(mask, vgrid, align_corners=True)
mask[mask < 0.999] = 0
mask[mask > 0] = 1
return output * mask
class Logger_(object):
def __init__(self, filename='default.log', stream=sys.stdout):
self.terminal = stream
self.log = open(filename, 'a')
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
pass
class Logger:
def __init__(self, model, scheduler, args):
self.model = model
self.args = args
self.scheduler = scheduler
self.total_steps = 0
self.running_loss_dict = {}
self.train_mace_list = []
self.train_steps_list = []
self.val_steps_list = []
self.val_results_dict = {}
def _print_training_status(self):
metrics_data = [np.mean(self.running_loss_dict[k]) for k in sorted(self.running_loss_dict.keys())]
training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_lr()[0])
metrics_str = ("{:10.4f}, "*len(metrics_data[:-1])).format(*metrics_data[:-1])
# Compute time left
time_left_sec = (self.args.num_steps - (self.total_steps+1)) * metrics_data[-1]
time_left_sec = time_left_sec.astype(np.int)
time_left_hms = "{:02d}h{:02d}m{:02d}s".format(time_left_sec // 3600, time_left_sec % 3600 // 60, time_left_sec % 3600 % 60)
time_left_hms = f"{time_left_hms:>12}"
# print the training status
print(training_str + metrics_str + time_left_hms)
# logging running loss to total loss
self.train_mace_list.append(np.mean(self.running_loss_dict['mace']))
self.train_steps_list.append(self.total_steps)
for key in self.running_loss_dict:
self.running_loss_dict[key] = []
def push(self, metrics):
self.total_steps += 1
for key in metrics:
if key not in self.running_loss_dict:
self.running_loss_dict[key] = []
self.running_loss_dict[key].append(metrics[key])
if self.total_steps % self.args.print_freq == self.args.print_freq-1:
self._print_training_status()
self.running_loss_dict = {}