-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReaderAnalyser.py
290 lines (242 loc) · 12.3 KB
/
ReaderAnalyser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import csv
import pysam
from pathlib import Path
from .Structures import Expansion
from .Structures import Locus
import numpy as np
from sklearn.mixture import GaussianMixture
def resultBedReader(file, loci_dict):
with open(file) as straglr:
straglr_reader = csv.reader(straglr, delimiter='\t')
expansion_list: list[Expansion] = []
sample_id = Path(file).stem
# loci allele1 allele2 YES/NO Referenz size_difference PathRange
for straglr in straglr_reader:
if straglr[0] != '#chrom':
# Variables are assigned based on the coordinates in the straglr reader
coords = straglr[0] + ":" + straglr[1] + "-" + straglr[2]
chr = straglr[0]
start = straglr[1]
end = straglr[2]
locus = loci_dict[coords][0].name
reference_size = float(loci_dict[coords][0].reference_size)
ref_motif = loci_dict[coords][0].motif
if straglr[14].strip() == "":
int_path_range = 'NA'
else:
int_path_range = straglr[14]
motif = straglr[3]
alleles = 0
# "-" means that there was no coverage in this region -> skip this loci
if straglr[4] == '-':
continue
# "-" means that straglr assigned no different number for second allele -> allele 1 = allele 2
elif straglr[8] != '-':
allele1 = round(float(straglr[4]))
allele2 = round(float(straglr[7]))
copy_number_1 = straglr[5]
copy_number_2 = straglr[8]
allele1_support = straglr[6]
allele2_support = straglr[9]
alleles = 2
else:
allele1 = round(float(straglr[4]))
allele2 = round(float(straglr[4]))
copy_number_1 = straglr[5]
copy_number_2 = straglr[5]
allele1_support = straglr[6]
allele2_support = straglr[6]
alleles = 1
expansion_object = Expansion(
chr=chr,
start=start,
end=end,
repeat_id=locus,
repeat_unit=motif,
ref_motif=ref_motif,
allele1_size=allele1,
allele2_size=allele2,
wt_size=reference_size,
pathogenic_range=int_path_range,
copy_numberA1=copy_number_1,
copy_numberA2=copy_number_2,
allele1_support=allele1_support,
allele2_support=allele2_support,
sample_id=sample_id
)
analyseGenotype(expansion_object, alleles)
expansion_list.append(expansion_object)
return expansion_list
def analyseGenotype(expansion_object: Expansion, alleles):
if alleles == 0:
# repeat not covered
expansion_object.in_pathogenic_range = 'NA'
expansion_object.size_difference = np.nan
elif alleles == 1:
if expansion_object.pathogenic_range == 'NA':
expansion_object.in_pathogenic_range = 'NA'
if expansion_object.allele1_size > expansion_object.allele2_size:
expansion_object.size_difference = expansion_object.allele1_size - expansion_object.wt_size
else:
expansion_object.size_difference = expansion_object.allele2_size - expansion_object.wt_size
# Check for pathogenic expansion size happens here; Size of sample expansion checked against lower boundary of pathogenic range from literature; Assignment of respective loci and sizes to corresponding lists
elif expansion_object.allele1_size > int(expansion_object.pathogenic_range) or expansion_object.allele2_size > int(expansion_object.pathogenic_range):
expansion_object.in_pathogenic_range = 'Yes'
if expansion_object.allele1_size > expansion_object.allele2_size:
expansion_object.size_difference = expansion_object.allele1_size - expansion_object.wt_size
else:
expansion_object.size_difference = expansion_object.allele2_size - expansion_object.wt_size
# If size of sample expansion is still below pathogenic range, they are added into general list
else:
expansion_object.in_pathogenic_range = 'No'
if expansion_object.allele1_size > expansion_object.allele2_size:
expansion_object.size_difference = expansion_object.allele1_size - expansion_object.wt_size
else:
expansion_object.size_difference = expansion_object.allele2_size - expansion_object.wt_size
else:
if expansion_object.pathogenic_range == 'NA':
expansion_object.in_pathogenic_range = 'NA'
# Same check and assignment as above
if expansion_object.allele1_size > expansion_object.allele2_size:
expansion_object.size_difference = expansion_object.allele1_size - expansion_object.wt_size
else:
expansion_object.size_difference = expansion_object.allele2_size - expansion_object.wt_size
elif expansion_object.allele1_size > int(expansion_object.pathogenic_range):
expansion_object.in_pathogenic_range = 'Yes'
expansion_object.size_difference = expansion_object.allele1_size - expansion_object.wt_size
else:
expansion_object.in_pathogenic_range = 'No'
if expansion_object.allele1_size > expansion_object.allele2_size:
expansion_object.size_difference = expansion_object.allele1_size - expansion_object.wt_size
else:
expansion_object.size_difference = expansion_object.allele2_size - expansion_object.wt_size
# TODO: use pandas for parsing
def lociBedReader(bedFile):
Loci = {}
with open(bedFile) as lociCoords:
lociReader_reader = csv.reader(lociCoords, delimiter='\t')
header = []
for locus in lociReader_reader:
if locus[0] == '#chr':
header = list(locus)
header[0] = header[0][1:]
print(header)
else:
key = locus[header.index("chr")] + ":" + locus[header.index("start")] + "-" + locus[header.index("end")]
new_object = Locus(locus[header.index("repeat_id")], locus[header.index("chr")], locus[header.index("start")], locus[header.index("end")],
locus[header.index("repeat_motif")], locus[header.index("repeat_id")], "", locus[header.index("ref_size")],
"NA", "NA")
if key in Loci:
Loci[key].append(new_object)
else:
Loci.update({key: [new_object]})
return Loci
def newGenotyping(expansion_object: Expansion, cutoff, new: bool):
concat_reads = []
number_of_reads = 0
if new:
for new_readlist in expansion_object.new_read_list:
concat_reads += new_readlist
number_of_reads = len(concat_reads)
else:
for original_readlist in expansion_object.read_list:
concat_reads += original_readlist
number_of_reads = len(concat_reads)
rearanged_array = np.array(concat_reads).reshape(-1,1)
X = rearanged_array
N = np.arange(1, 4)
M = np.arange(1, 3)
# fit models with 1-3 components
if len(np.unique(X)) < 2:
models = [GaussianMixture(1, covariance_type='full', init_params="kmeans", max_iter=500).fit(X)]
elif len(np.unique(X)) == 2:
models = [GaussianMixture(m, covariance_type='full', init_params="kmeans", max_iter=500).fit(X)
for m in M]
else:
models = [GaussianMixture(n, covariance_type='full', init_params="kmeans", max_iter=500).fit(X)
for n in N]
BIC = [m.bic(X) for m in models]
best_model = models[np.argmin(BIC)]
cluster_assignment = best_model.predict(X)
cluster1 = []
cluster2 = []
cluster3 = []
clusters = []
for i in range(len(X)):
if cluster_assignment[i] == 0:
cluster1.append(X[i][0])
if cluster_assignment[i] == 1:
cluster2.append(X[i][0])
if cluster_assignment[i] == 2:
cluster3.append(X[i][0])
clusters.append(cluster1)
clusters.append(cluster2)
clusters.append(cluster3)
clusters.sort(key=len, reverse=True)
cluster1 = clusters[0]
cluster2 = clusters[1]
cluster3 = clusters[2]
if cluster3:
distance13 = abs(np.mean(cluster3) - np.mean(cluster1))
distance12 = abs(np.mean(cluster3) - np.mean(cluster2))
if distance12 < distance13:
if distance12 < max(5, 2*np.var(cluster2)):
cluster2 += cluster3
else:
if distance13 < max(5, 2*np.var(cluster2)):
cluster1 += cluster3
allele1 = cluster1
allele2 = cluster2
if allele1 and allele2:
expansion_object.new_read_list = [allele1, allele2]
expansion_object.new_allele1 = np.median(allele1)
expansion_object.new_allele2 = np.median(allele2)
if expansion_object.new_allele1 > expansion_object.new_allele2:
expansion_object.new_size_difference = expansion_object.new_allele1 - expansion_object.wt_size
if expansion_object.pathogenic_range == "NA":
expansion_object.new_in_pathogenic_range = "NA"
elif expansion_object.new_allele1 > int(expansion_object.pathogenic_range):
expansion_object.new_in_pathogenic_range = "Yes"
else:
expansion_object.new_in_pathogenic_range = "No"
else:
expansion_object.new_size_difference = expansion_object.new_allele2 - expansion_object.wt_size
if expansion_object.pathogenic_range == "NA":
expansion_object.new_in_pathogenic_range = "NA"
elif expansion_object.new_allele2 > int(expansion_object.pathogenic_range):
expansion_object.new_in_pathogenic_range = "Yes"
else:
expansion_object.new_in_pathogenic_range = "No"
expansion_object.new_copy_numberA1 = expansion_object.new_allele1 / len(expansion_object.repeat_unit)
expansion_object.new_copy_numberA2 = expansion_object.new_allele2 / len(expansion_object.repeat_unit)
expansion_object.new_allele1_support = len(allele1)
expansion_object.new_allele2_support = len(allele2)
else:
expansion_object.new_read_list = [allele1 + allele2]
expansion_object.new_allele1 = np.median(allele1)
expansion_object.new_allele2 = np.median(allele1)
expansion_object.new_size_difference = expansion_object.new_allele1 - expansion_object.wt_size
if expansion_object.pathogenic_range == "NA":
expansion_object.new_in_pathogenic_range = "NA"
elif expansion_object.new_allele1 > int(expansion_object.pathogenic_range):
expansion_object.new_in_pathogenic_range = "Yes"
else:
expansion_object.new_in_pathogenic_range = "No"
expansion_object.new_copy_numberA1 = expansion_object.new_allele1 / len(expansion_object.repeat_unit)
expansion_object.new_copy_numberA2 = expansion_object.new_allele2 / len(expansion_object.repeat_unit)
expansion_object.new_allele1_support = len(allele1)
if number_of_reads > 3 * cutoff:
for new_list in expansion_object.new_read_list:
if len(new_list) <= cutoff:
expansion_object.new_read_list.remove(new_list)
newGenotyping(expansion_object, cutoff, True)
def expansionScorer(expansion: Expansion, new_clustering: bool):
if expansion.pathogenic_range != "NA":
if new_clustering:
score = (expansion.new_size_difference) / (int(expansion.pathogenic_range) - expansion.wt_size)
expansion.new_norm_score = round(score, 4)
else:
score = (expansion.size_difference) / (int(expansion.pathogenic_range) - expansion.wt_size)
expansion.norm_score = round(score, 4)
else:
expansion.norm_score = None