forked from sachuverma/DataStructures-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMaximum Subarray.cpp
57 lines (44 loc) · 1 KB
/
Maximum Subarray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/*
Maximum Subarray
===============
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Example 2:
Input: nums = [1]
Output: 1
Example 3:
Input: nums = [0]
Output: 0
Example 4:
Input: nums = [-1]
Output: -1
Example 5:
Input: nums = [-2147483647]
Output: -2147483647
Constraints:
1 <= nums.length <= 2 * 104
-231 <= nums[i] <= 231 - 1
*/
class Solution
{
public:
int maxSubArray(vector<int> &nums)
{
int n = nums.size();
if (n == 0)
return 0;
vector<int> dp(n, 0);
dp[0] = nums[0];
int ans = nums[0];
for (int i = 1; i < n; ++i)
{
dp[i] = max(nums[i], nums[i] + dp[i - 1]);
ans = max(ans, dp[i]);
}
return ans;
}
};