This document has instructions for running LLaMA2 7B and LLaMA2 13B inference (generation) using Intel-optimized PyTorch.
Follow link to install and build Pytorch, IPEX, TorchVison and TCMalloc.
-
Install Intel OpenMP
pip install packaging intel-openmp accelerate
-
Set IOMP and tcmalloc Preload for better performance
export LD_PRELOAD="<path_to>/tcmalloc/lib/libtcmalloc.so":"<path_to_iomp>/lib/libiomp5.so":$LD_PRELOAD
-
Set ENV to use fp16 AMX if you are using a supported platform
export DNNL_MAX_CPU_ISA=AVX512_CORE_AMX_FP16
-
git clone https://github.com/IntelAI/models.git
-
cd models/models_v2/pytorch/llama/inference/cpu
-
Create virtual environment
venv
and activate it:python3 -m venv venv . ./venv/bin/activate
-
Run setup.sh
./setup.sh
-
Install the latest CPU versions of torch, torchvision and intel_extension_for_pytorch
-
Set INPUT_TOKEN before running the model
export INPUT_TOKEN=32 (choice in [32 64 128 256 512 1024 2016], we prefer to benchmark on 32 and 2016)
Set OUTPUT_TOKEN before running the model
export OUTPUT_TOKEN=32 (32 is preferred, while you could set any other length)
Set FINETUNED_MODEL to llama2 7b or llama2 13b before running
#Test llama2 7b export FINETUNED_MODEL="meta-llama/Llama-2-7b-hf" #Test llama2 13b export FINETUNED_MODEL="meta-llama/Llama-2-13b-hf"
About the BATCH_SIZE in scripts
using BATCH_SIZE=1 for realtime mode using BATCH_SIZE=N for throughput mode (N could be further tuned according to the testing host, by default using 1);
About the BEAM_SIZE in scripts
using BEAM_SIZE=4 by default
- Do calibration to get "qconfig.json" before running INT8.
#optional: qconfig.json is saved in this repo, you can also do calibration by yourself to re-generation it bash do_quantization.sh calibration sq #using smooth quant as default #unzip qconfig.zip to get qconfig.json, if you meet error to use this uploaded version of qconfig.zip, please re-generation it as above unzip qconfig.zip
- Setup required environment paramaters
Parameter | export command |
---|---|
TEST_MODE (THROUGHPUT, ACCURACY, REALTIME) | export TEST_MODE=THROUGHPUT |
OUTPUT_DIR | export OUTPUT_DIR=<path to an output directory> |
FINETUNED_MODEL | #Test llama2 7b: export FINETUNED_MODEL="meta-llama/Llama-2-7b-hf"; #Test llama2 13b: export FINETUNED_MODEL="meta-llama/Llama-2-13b-hf" |
PRECISION | export PRECISION=bf16 (fp32, bf32, bf16, fp16, int8-fp32, int8-bf16) |
INPUT_TOKEN | export INPUT_TOKEN=32 (choice in [32 64 128 256 512 1024 2016], we prefer to benchmark on 32 and 2016) |
OUTPUT_TOKEN | export OUTPUT_TOKEN=32 (32 is preferred, while you could set any other length) |
MODEL_DIR | export MODEL_DIR=$(pwd) |
BATCH_SIZE (optional) | export BATCH_SIZE=256 |
Single-tile output will typically looks like:
2024-05-17 22:35:31,097 - root - INFO - ---------- Summary: ----------
2024-05-17 22:35:31,097 - root - INFO - inference-latency: 18.211 sec.
2024-05-17 22:35:31,097 - root - INFO - first-token-latency: 4.227 sec.
2024-05-17 22:35:31,097 - root - INFO - rest-token-latency: 0.110 sec.
2024-05-17 22:35:31,097 - root - INFO - P90-rest-token-latency: 0.111 sec.
2024-05-17 22:35:36,648 - root - INFO - meta-llama/Llama-2-7b-hf;Input/Output Token;1024/128;latency;total-latency;bf16;1; 18.179000
2024-05-17 22:35:36,655 - root - INFO - meta-llama/Llama-2-7b-hf;Input/Output Token;1024/128;latency;first-token-latency;bf16;1; 4.238500
2024-05-17 22:35:36,664 - root - INFO - meta-llama/Llama-2-7b-hf;Input/Output Token;1024/128;latency;rest-token-latency;bf16;1; 0.110000
2024-05-17 22:35:36,671 - root - INFO - meta-llama/Llama-2-7b-hf;Input/Output Token;1024/128;latency;P90-rest-token-latency;bf16;1; 0.110500
2024-05-17 22:35:36,678 - root - INFO - meta-llama/Llama-2-7b-hf;Input/Output Token;1024/128;latency;token_per_sec;bf16;1; 9.110
2024-05-17 22:35:36,686 - root - INFO - meta-llama/Llama-2-7b-hf;Input/Output Token;1024/128;latency;first_token_thp;bf16;1; 0.236
Final results of the inference run can be found in results.yaml
file.
results:
- key: first token throughput
value: 15.648000
- key: rest token throughput
value: 0.284250
- key: first token latency
value: 4.238500
- key: rest_token_latency
value: 0.110000
- key: accuracy
value: 93.17