DLRM v2 Inference best known configurations with Intel® Extension for PyTorch.
Use Case | Framework | Model Repo | Branch/Commit/Tag | Optional Patch |
---|---|---|---|---|
Inference | PyTorch | https://github.com/facebookresearch/dlrm/tree/main/torchrec_dlrm | - | - |
Follow link to build Pytorch, IPEX, TorchVison and TCMalloc.
-
Installation of Build PyTorch + IPEX + TorchVision Jemalloc and TCMalloc
-
Installation of oneccl-bind-pt (if running distributed)
-
Set Jemalloc and tcmalloc Preload for better performance
The jemalloc and tcmalloc should be built from the General setup section.
export LD_PRELOAD="<path to the jemalloc directory>/lib/libjemalloc.so":"path_to/tcmalloc/lib/libtcmalloc.so":$LD_PRELOAD export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:9000000000,muzzy_decay_ms:9000000000"
-
Set IOMP preload for better performance
pip install packaging intel-openmp export LD_PRELOAD=path/lib/libiomp5.so:$LD_PRELOAD
-
Set ENV to use AMX if you are using SPR
export DNNL_MAX_CPU_ISA=AVX512_CORE_AMX
-
Set ENV to use fp16 AMX if you are using a supported platform
export DNNL_MAX_CPU_ISA=AVX512_CORE_AMX_FP16
The dataset can be downloaded and preprocessed by following https://github.com/mlcommons/training/tree/master/recommendation_v2/torchrec_dlrm#create-the-synthetic-multi-hot-dataset.
We also provided a preprocessed scripts based on the instruction above. preprocess_raw_dataset.sh
.
After you loading the raw dataset day_*.gz
and unzip them to RAW_DIR.
cd <AI Reference Models>/models_v2/pytorch/torchrec_dlrm/inference/cpu
export MODEL_DIR=$(pwd)
export RAW_DIR=<the unziped raw dataset>
export TEMP_DIR=<where you choose the put the temp file during preprocess>
export PREPROCESSED_DIR=<where you choose the put the one-hot dataset>
export MULTI_HOT_DIR=<where you choose the put the multi-hot dataset>
bash preprocess_raw_dataset.sh
You can download and unzip checkpoint by following https://github.com/mlcommons/inference/tree/master/recommendation/dlrm_v2/pytorch#downloading-model-weights
-
git clone https://github.com/IntelAI/models.git
-
cd models/models_v2/pytorch/torchrec_dlrm/inference/cpu
-
Create virtual environment
venv
and activate it:python3 -m venv venv . ./venv/bin/activate
-
Install general model requirements
./setup.sh
-
Install the latest CPU versions of torch, torchvision and intel_extension_for_pytorch.
-
Setup required environment paramaters
Parameter | export command |
---|---|
TEST_MODE (THROUGHPUT, ACCURACY) | export TEST_MODE=THROUGHPUT |
DATASET_DIR | export DATASET_DIR=<multi-hot dataset dir> |
WEIGHT_DIR (ONLY FOR ACCURACY) | export WEIGHT_DIR=<offical released checkpoint> |
PRECISION | export PRECISION=int8 <specify the precision to run: int8, fp32, bf32 or bf16> |
OUTPUT_DIR | export OUTPUT_DIR=$PWD |
BATCH_SIZE (optional) | export BATCH_SIZE=<set a value for batch size, else it will run with default batch size> |
TORCH_INDUCTOR (optional) | export TORCH_INDUCTOR=<0 or 1> |
- Run
run_model.sh
Single-tile output will typically look like:
2024-07-18 15:58:00,970 - dlrm_main.py - __main__ - INFO - EVAL_START, EPOCH_NUM: 0
2024-07-18 16:00:14,120 - dlrm_main.py - __main__ - INFO - AUROC over test set: [0.5129603203103565, 0.0, 0.0].
2024-07-18 16:00:14,121 - dlrm_main.py - __main__ - INFO - Number of test samples: 131072
2024-07-18 16:00:14,121 - dlrm_main.py - __main__ - INFO - Throughput: 103711.5248249468 fps
2024-07-18 16:00:14,121 - dlrm_main.py - __main__ - INFO - Final AUROC: [0.5129603203103565, 0.0, 0.0]
2024-07-18 16:00:17,133 - dlrm_main.py - __main__ - INFO - AUROC over test set: [0.5129603203103565, 0.0, 0.0].
2024-07-18 16:00:17,133 - dlrm_main.py - __main__ - INFO - Number of test samples: 131072
2024-07-18 16:00:17,133 - dlrm_main.py - __main__ - INFO - Throughput: 102890.12235101678 fps
2024-07-18 16:00:17,134 - dlrm_main.py - __main__ - INFO - Final AUROC: [0.5129603203103565, 0.0, 0.0]
Final results of the inference run can be found in results.yaml
file.
results:
- key: throughput
value: 102890.122
unit: fps
- key: latency
value: N/A
unit: s
- key: accuracy
value: 0.513
unit: ROC AUC