Clone this repo, navigate to the root directory of the folder and run pip install -e .
python -m penne.data.download
Downloads and uncompresses the mdb
and ptdb
datasets used for training.
python -m penne.preprocess
Converts each dataset to a common format on disk ready for training.
python -m penne.partition
Generates train
, valid
, and test
partitions for mdb
and ptdb
.
python -m penne.train --config <config> --datasets <datasets> --gpus <gpus>
Trains a model. TODO - args
Run tensorboard --logdir runs/. If you are running training remotely, you must create a SSH connection with port forwarding to view Tensorboard. This can be done with ssh -L 6006:localhost:6006 @. Then, open localhost:6006 in your browser.
python -m penne.evaluate \
--config <config> \
--datasets <datasets> \
--checkpoint <checkpoint> \
--gpu <gpu>
Evaluate a model. <checkpoint>
is the checkpoint file to evaluate and <gpu>
is the GPU index.