-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathslmetric_pw.m
332 lines (300 loc) · 11.3 KB
/
slmetric_pw.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
function M = slmetric_pw(X1, X2, mtype, varargin)
%SLMETRIC_PW Compute the metric between column vectors pairwisely
%
% [ Syntax ]
% - M = slmetric_pw(X1, X2, mtype);
% - M = slmetric_pw(X1, X2, mtype, ...);
%
% [ Arguments ]
% - X1, X2: the sample matrices
% - mtype: the string indicating the type of metric
% - M: the resulting metric matrix
%
% [ Description ]
% - M = slmetric_pw(X1, X2, mtype) Computes the metrics between
% column vectors of X1 and X2 pairwisely, using the metric
% specified by mtype.
%
% Both X1 and X2 are matrices with each column representing a
% sample. X1 and X2 should have the same number of rows. Suppose
% the size of X1 is d x n1, and the size of X2 is d x n2. Then
% the output metric matrix M will be of size n1 x n2, in which
% M(i, j) is the metric value between X1(:,i) and X2(:,j).
%
% - M = slmetric_pw(X1, X2, mtype, ...) Some metric types requires
% extra parameters, which should be specified in params.
%
% The supported metrics of this function are listed as follows:
% \{:
% - eucdist: Euclidean distance:
% $ ||x - y|| $
%
% - sqdist: Square of Euclidean distance:
% $ ||x - y||^2 $
%
% - dotprod: Canonical dot product:
% $ <x,y> = x^T * y $
%
% - nrmcorr: Normalized correlation (cosine angle):
% $ (x^T * y ) / (||x|| * ||y||) $
%
% - corrdist: Normalized Correlation distance
% $ 1 - nrmcorr(x, y) $
%
% - angle: Angle between two vectors (in radian)
% $ arccos (nrmcorr(x, y)) $
% - quadfrm: Quadratic form:
% $ x^T * Q * y $
% Q is specified in the 1st extra parameter
%
% - quaddiff: Quadratic form of difference:
% $ (x - y)^T * Q * (x - y) $
% Q is specified in the 1st extra parameter
%
% - cityblk: City block distance (abssum of difference)
% $ sum_i |x_i - y_i| $
%
% - maxdiff: Maximum absolute difference
% $ max_i |x_i - y_i| $
%
% - mindiff: Minimum absolute difference
% $ min_i |x_i - y_i| $
%
% - minkowski: Minkowski distance
% $ (\sum_i |x_i - y_i|^p)^(1/p) $
% The order p is specified in the 1st extra parameter
%
% - wsqdist: Weighted square of Euclidean distance
% $ \sum_i w_i (x_i - y_i)^2 $
% the weights w is specified in 1st extra parameter
% as a d x 1 column vector
%
% - hamming: Hamming distance with threshold t
% \{
% ht1 = x > t
% ht2 = y > t
% d = sum(ht1 ~= ht2)
% \}
% use threshold t as the first extra param.
% (by default, t is set to zero).
%
% - hamming_nrm: Normalized hamming distance, which equals the
% ratio of the elements that differ.
% \{
% ht1 = x > t
% ht2 = y > t
% d = sum(ht1 ~= ht2) / length(ht1)
% \}
% use threshold t as the first extra param.
% (by default, t is set to zero).
%
% - intersect: Histogram Intersection
% $ d = sum min(x, y) / min(sum(x), sum(y))$
%
% - intersectdis: Histogram intersection distance
% $ d = 1 - sum min(x, y) / min(sum(x), sum(y)) $
%
% - chisq: Chi-Square Distance
% $ d = sum (x(i) - y(i))^2/(2 * (x(i)+y(i))) $
%
% - kldiv: Kull-back Leibler divergence
% $ d = sum x(i) log (x(i) / y(i)) $
%
% - jeffrey: Jeffrey divergence
% $ d = KL(h1, (h1+h2)/2) + KL(h2, (h1+h2)/2) $
% \:}
%
% [ Remarks ]
% - Both X1 and X2 should be a matrix of numeric values, except
% for case when metric type is 'hamming' or 'hamming_nrm'.
% For hamming or hamming_nrm metric, the input matrix can be logical.
%
% [ Examples ]
% - Compute different types of metrics in pairwise manner
% \{
% % prepare sample matrix
% X1 = rand(10, 100);
% X2 = rand(10, 150);
%
% % compute the euclidean distances (L2)
% % between the samples in X1 and X2
% M = slmetric_pw(X1, X2, 'eucdist');
%
% % compute the eucidean distances between the samples
% % in X1 in a pairwise manner
% M = slmetric_pw(X1, X1, 'eucdist');
%
% % compute the city block distances (L1)
% M = slmetric_pw(X1, X2, 'cityblk');
%
% % compute the normalize correlations
% M = slmetric_pw(X1, X2, 'nrmcorr');
%
% % compute hamming distances
% M = slmetric_pw(X1, X2, 'hamming', 0.5);
% M2 = slmetric_pw((X1 > 0.5), (X2 > 0.5), 'hamming');
% assert(isequal(M, M2));
% \}
%
% - Compute the parameterized metrics
% \{
% % compute weighted squared distances with user-supplied weights
% weights = rand(10, 1);
% M = slmetric_pw(X1, X2, 'wsqdist', weights);
%
% % compute quadratic distances (x-y)^T * Q (x-y)
% Q = rand(10, 10);
% M = slmetric_pw(X1, X2, 'quaddiff', Q);
%
% % compute Minkowski distance of order 3
% M = slmetric_pw(X1, X2, 'minkowski', 3);
% \}
%
% [ History ]
% - Created by Dahua Lin on Dec 06th, 2005
% - Modified by Dahua Lin on Apr 21st, 2005
% - regularize the error reporting
% - Modified by Dahua Lin on Sep 11st, 2005
% - completely rewrite the core codes based on new mex computation
% cores, and the runtime efficiency in both time and space is
% significantly increased.
% - Modified by Dahua Lin on Jul 02, 2007
% - rewrite the core computation based on the bsxfun introduced in
% MATLAB R2007a
% - rewrite the core-mex for cityblk, maxdiff, mindiff
% - introduce new metrics: corrdist, minkowski
% - Modified by Dahua Lin on Jul 30, 2007
% - Add the metric types for histograms, which are originally
% implemented in slhistmetric_pw in sltoolbox v1.
% - Modified by Dahua Lin on Aug 16, 2007
% - revise some of the help contents
%
%% parse and verify input arguments
error(nargchk(3, inf, nargin));
assert(ischar(mtype), 'sltoolbox:slmetric_pw:invalidarg', ...
'The metric type should be a string.');
if strcmp(mtype, 'hamming') || strcmp(mtype, 'hamming_nrm')
assert((isnumeric(X1) || islogical(X1)) && ndims(X1) == 2 && ...
(isnumeric(X2) || islogical(X2)) && ndims(X2) == 2, ...
'sltoolbox:slmetric_pw:invalidarg', 'X1 and X2 should be numeric or logical matrices.');
else
assert(isnumeric(X1) && ndims(X1) == 2 && isnumeric(X2) && ndims(X2) == 2, ...
'sltoolbox:slmetric_pw:invalidarg', 'X1 and X2 should be numeric matrices.');
end
assert(isa(X2, class(X1)), ...
'sltoolbox:slmetric_pw:invalidarg', 'X1 and X2 should be of the same class.');
if isempty(X1) || isempty(X2)
M = [];
return;
end
%% compute
switch mtype
case {'eucdist', 'sqdist'}
checkdim(X1, X2);
M = bsxfun(@plus, sum(X1 .* X1, 1)', (-2) * X1' * X2);
M = bsxfun(@plus, sum(X2 .* X2, 1), M);
M(M < 0) = 0;
if strcmp(mtype, 'eucdist')
M = sqrt(M);
end
case 'dotprod'
checkdim(X1, X2);
M = X1' * X2;
case {'nrmcorr', 'corrdist', 'angle'}
checkdim(X1, X2);
ns1 = sqrt(sum(X1 .* X1, 1));
ns2 = sqrt(sum(X2 .* X2, 1));
ns1(ns1 == 0) = 1;
ns2(ns2 == 0) = 1;
M = bsxfun(@times, X1' * X2, 1 ./ ns1');
M = bsxfun(@times, M, 1 ./ ns2);
switch mtype
case 'corrdist'
M = 1 - M;
case 'angle'
M = real(acos(M));
end
case 'quadfrm'
Q = varargin{1};
M = X1' * Q * X2;
case 'quaddiff'
checkdim(X1, X2);
Q = varargin{1};
M = X1' * (-(Q + Q')) * X2;
M = bsxfun(@plus, M, sum(X1 .* (Q * X1), 1)');
M = bsxfun(@plus, M, sum(X2 .* (Q * X2), 1));
case 'cityblk'
checkdim(X1, X2);
M = pwmetrics_cimp(X1, X2, int32(1));
case 'maxdiff'
checkdim(X1, X2);
M = pwmetrics_cimp(X1, X2, int32(3));
case 'mindiff'
checkdim(X1, X2);
M = pwmetrics_cimp(X1, X2, int32(2));
case 'minkowski'
checkdim(X1, X2);
pord = varargin{1};
if ~isscalar(pord)
error('sltoolbox:slmetric_pw:invalidparam', ...
'the mikowski order should be a scalar');
end
pord = cast(pord, class(X1));
M = pwmetrics_cimp(X1, X2, int32(4), pord);
case 'wsqdist'
d = checkdim(X1, X2);
w = varargin{1};
if ~isequal(size(w), [d, 1])
error('sltoolbox:slmetric_pw:invalidparam', ...
'the weights should be given as a d x 1 vector.');
end
wX2 = bsxfun(@times, X2, w);
M = bsxfun(@plus, (-2) * X1' * wX2, sum(wX2 .* X2, 1));
clear wX2;
wX1 = bsxfun(@times, X1, w);
M = bsxfun(@plus, M, sum(wX1 .* X1, 1)');
case {'hamming', 'hamming_nrm'}
checkdim(X1, X2);
if islogical(X1) && islogical(X2)
H1 = X1;
H2 = X2;
else
if isempty(varargin)
t = 0;
else
t = varargin{1};
assert(isnumeric(t) && isscalar(t), ...
'sltoolbox:slmetric_pw:invalidparam', 't should be a numeric scalar.');
end
H1 = X1 > t;
H2 = X2 > t;
end
M = pwhamming_cimp(H1, H2);
if strcmp(mtype, 'hamming_nrm')
M = M / size(H1, 1);
end
case 'intersect'
checkdim(X1, X2);
M = pwmetrics_cimp(X1, X2, int32(5));
case 'intersectdis'
checkdim(X1, X2);
M = 1 - pwmetrics_cimp(X1, X2, int32(5));
case 'chisq'
checkdim(X1, X2);
M = pwmetrics_cimp(X1, X2, int32(6));
case 'kldiv'
checkdim(X1, X2);
M = pwmetrics_cimp(X1, X2, int32(7));
case 'jeffrey'
checkdim(X1, X2);
M = pwmetrics_cimp(X1, X2, int32(8));
otherwise
error('sltoolbox:slmetric_pw:unknowntype', 'Unknown metric type %s', mtype);
end
%% Auxiliary function
function d = checkdim(X1, X2)
d = size(X1, 1);
if d ~= size(X2, 1)
error('sltoolbox:slmetric_pw:sizmismatch', ...
'X1 and X2 have different sample dimensions');
end