forked from zhangyongshun/BagofTricks-LT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet.py
203 lines (175 loc) · 6.1 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(
inplanes, planes, kernel_size=3, padding=1, bias=False, stride=stride
)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(
planes, planes, kernel_size=3, padding=1, bias=False, stride=1
)
self.bn2 = nn.BatchNorm2d(planes)
# self.downsample = downsample
if stride != 1 or self.expansion * planes != inplanes:
self.downsample = nn.Sequential(
nn.Conv2d(
inplanes,
self.expansion * planes,
kernel_size=1,
stride=stride,
bias=False,
),
nn.BatchNorm2d(self.expansion * planes),
)
else:
self.downsample = None
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class BottleNeck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1):
super(BottleNeck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.relu1 = nn.ReLU(True)
self.conv2 = nn.Conv2d(
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False
)
self.bn2 = nn.BatchNorm2d(planes)
self.relu2 = nn.ReLU(True)
self.conv3 = nn.Conv2d(
planes, planes * self.expansion, kernel_size=1, bias=False
)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
if stride != 1 or self.expansion * planes != inplanes:
self.downsample = nn.Sequential(
nn.Conv2d(
inplanes,
self.expansion * planes,
kernel_size=1,
stride=stride,
bias=False,
),
nn.BatchNorm2d(self.expansion * planes),
)
else:
self.downsample = None
self.relu = nn.ReLU(True)
def forward(self, x):
out = self.relu1(self.bn1(self.conv1(x)))
out = self.relu2(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
if self.downsample != None:
residual = self.downsample(x)
else:
residual = x
out = out + residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(
self,
cfg,
block_type,
num_blocks,
last_layer_stride=2,
):
super(ResNet, self).__init__()
self.inplanes = 64
self.block = block_type
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(True)
self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(num_blocks[0], 64)
self.layer2 = self._make_layer(
num_blocks[1], 128, stride=2
)
self.layer3 = self._make_layer(
num_blocks[2], 256, stride=2
)
self.layer4 = self._make_layer(
num_blocks[3],
512,
stride=last_layer_stride,
)
def load_model(self, pretrain):
print("Loading Backbone pretrain model from {}......".format(pretrain))
model_dict = self.state_dict()
pretrain_dict = torch.load(pretrain)
pretrain_dict = pretrain_dict["state_dict"] if "state_dict" in pretrain_dict else pretrain_dict
from collections import OrderedDict
new_dict = OrderedDict()
for k, v in pretrain_dict.items():
if k.startswith("module"):
k = k[7:]
if "fc" not in k and "classifier" not in k:
k = k.replace("backbone.", "")
new_dict[k] = v
model_dict.update(new_dict)
self.load_state_dict(model_dict)
print("Backbone model has been loaded......")
def _make_layer(self, num_block, planes, stride=1):
strides = [stride] + [1] * (num_block - 1)
layers = []
for now_stride in strides:
layers.append(
self.block(
self.inplanes, planes, stride=now_stride
)
)
self.inplanes = planes * self.block.expansion
return nn.Sequential(*layers)
def forward(self, x, **kwargs):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.pool(out)
out = self.layer1(out)
if 'layer' in kwargs and kwargs['layer'] == 'layer1':
out = kwargs['coef']*out + (1-kwargs['coef'])*out[kwargs['index']]
out = self.layer2(out)
if 'layer' in kwargs and kwargs['layer'] == 'layer2':
out = kwargs['coef']*out+(1-kwargs['coef'])*out[kwargs['index']]
out = self.layer3(out)
if 'layer' in kwargs and kwargs['layer'] == 'layer3':
out = kwargs['coef']*out+(1-kwargs['coef'])*out[kwargs['index']]
out = self.layer4(out)
if 'layer' in kwargs and kwargs['layer'] == 'layer4':
out = kwargs['coef']*out+(1-kwargs['coef'])*out[kwargs['index']]
return out
def res50(
cfg,
pretrain=True,
pretrained_model="",
last_layer_stride=2,
):
resnet = ResNet(
cfg,
BottleNeck,
[3, 4, 6, 3],
last_layer_stride=last_layer_stride,
)
if pretrain and pretrained_model != "":
resnet.load_model(pretrain=pretrained_model)
else:
print("Choose to train from scratch")
return resnet
if __name__ == "__main__":
pass