forked from sinaptik-ai/pandas-ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquery_exec_tracker.py
295 lines (241 loc) · 8.66 KB
/
query_exec_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import base64
import json
import os
import time
from collections import defaultdict
from typing import Any, List, TypedDict, Union
import requests
from pandasai.__version__ import __version__
from pandasai.connectors import BaseConnector
from pandasai.helpers.encoder import CustomEncoder
from pandasai.pipelines.chat.chat_pipeline_input import (
ChatPipelineInput,
)
from pandasai.pipelines.pipeline_context import PipelineContext
class ResponseType(TypedDict):
type: str
value: Any
exec_steps = {
"cache_hit": "Cache Hit",
"get_prompt": "Generate Prompt",
"generate_code": "Generate Code",
"execute_code": "Code Execution",
"retry_run_code": "Retry Code Generation",
"parse": "Parse Output",
}
class QueryExecTracker:
_query_info: dict
_dataframes: List
_skills: List
_response: ResponseType
_steps: List
_func_exec_count: dict
_success: bool
_server_config: dict
_last_log_id: int
def __init__(
self,
server_config: Union[dict, None] = None,
) -> None:
self._success = False
self._start_time = None
self._last_log_id = None
self._server_config = server_config
self._query_info = {}
def start_new_track(self, input: ChatPipelineInput):
"""
Resets tracking variables to start new track
"""
self._last_log_id = None
self._start_time = time.time()
self._dataframes: List = []
self._skills: List = []
self._response: ResponseType = {}
self._steps: List = []
self._query_info = {}
self._func_exec_count: dict = defaultdict(int)
self._query_info = {
"conversation_id": str(input.conversation_id),
"instance": "Agent",
"query": input.query,
"output_type": input.output_type,
"pandasai_version": __version__,
}
def convert_dataframe_to_dict(self, df):
json_data = json.loads(
df.to_json(
orient="split",
date_format="iso",
default_handler=str,
force_ascii=False,
)
)
return {"headers": json_data["columns"], "rows": json_data["data"]}
def add_dataframes(self, dfs: List[BaseConnector]) -> None:
"""
Add used dataframes for the query to query exec tracker
Args:
dfs (List[BaseConnector]): List of dataframes
"""
for df in dfs:
head = df.get_schema()
self._dataframes.append(self.convert_dataframe_to_dict(head))
def add_skills(self, context: PipelineContext):
self._skills = context.skills_manager.to_object()
def add_step(self, step: dict) -> None:
"""
Add Custom Step that is performed for additional information
Args:
step (dict): dictionary containing information
"""
if "_steps" not in self.__dict__:
self._steps = []
self._steps.append(step)
def set_final_response(self, response: Any):
self._response = response
def execute_func(self, function, *args, **kwargs) -> Any:
"""
Tracks function executions, calculates execution time and prepare data
Args:
function (function): Function that is to be executed
Returns:
Any: Response return after function execution
"""
start_time = time.time()
# Get the tag from kwargs if provided, or use the function name as the default
tag = kwargs.pop("tag", function.__name__)
try:
result = function(*args, **kwargs)
execution_time = time.time() - start_time
if tag not in exec_steps:
return result
step_data = self._generate_exec_step(tag, result)
step_data["success"] = True
step_data["execution_time"] = execution_time
self._steps.append(step_data)
return result
except Exception:
execution_time = time.time() - start_time
self._steps.append(
{
"type": exec_steps[tag],
"success": False,
"execution_time": execution_time,
}
)
raise
def _generate_exec_step(self, func_name: str, result: Any) -> dict:
"""
Extracts and Generates result
Args:
func_name (str): function name that is executed
result (Any): function output response
Returns:
dict: dictionary with information about the function execution
"""
step = {"type": exec_steps[func_name]}
if func_name == "get_prompt":
step["prompt_class"] = result.__class__.__name__
step["generated_prompt"] = result.to_string()
elif func_name == "retry_run_code":
self._func_exec_count["retry_run_code"] += 1
step[
"type"
] = f"{exec_steps[func_name]} ({self._func_exec_count['retry_run_code']})"
step["code_generated"] = result
elif func_name in {"cache_hit", "generate_code"}:
step["code_generated"] = result
elif func_name == "execute_code":
self._response = self._format_response(result)
step["result"] = self._response
return step
def _format_response(self, result: ResponseType) -> ResponseType:
"""
Format output response
Args:
result (ResponseType): response returned after execution
Returns:
ResponseType: formatted response output
"""
if result["type"] == "dataframe":
df_dict = self.convert_dataframe_to_dict(result["value"])
return {"type": result["type"], "value": df_dict}
elif result["type"] == "plot":
with open(result["value"], "rb") as image_file:
image_data = image_file.read()
# Encode the image data to Base64
base64_image = (
f"data:image/png;base64,{base64.b64encode(image_data).decode()}"
)
return {
"type": result["type"],
"value": base64_image,
}
else:
return result
def get_summary(self) -> dict:
"""
Returns the summary in json to steps involved in execution of track
Returns:
dict: summary json
"""
if self._start_time is None:
raise RuntimeError("[QueryExecTracker]: Tracking not started")
execution_time = time.time() - self._start_time
return {
"query_info": self._query_info,
"skills": self._skills,
"dataframes": self._dataframes,
"steps": self._steps,
"response": self._response,
"execution_time": execution_time,
"success": self._success,
}
def get_execution_time(self) -> float:
return time.time() - self._start_time
def publish(self) -> None:
"""
Publish Query Summary to remote logging server
"""
api_key = None
server_url = None
if self._server_config is None:
server_url = os.environ.get("PANDASAI_API_URL", "https://api.domer.ai")
api_key = os.environ.get("PANDASAI_API_KEY") or None
else:
server_url = self._server_config.get(
"server_url", os.environ.get("PANDASAI_API_URL", "https://api.domer.ai")
)
api_key = self._server_config.get(
"api_key", os.environ.get("PANDASAI_API_KEY")
)
if api_key is None:
return
try:
log_data = {
"json_log": self.get_summary(),
}
encoder = CustomEncoder()
ecoded_json_str = encoder.encode(log_data)
headers = {"Authorization": f"Bearer {api_key}"}
response = requests.post(
f"{server_url}/api/log/add",
json=json.loads(ecoded_json_str),
headers=headers,
)
if response.status_code != 200:
raise Exception(response.text)
json_data = json.loads(response.text)
if "data" in json_data and json_data["data"] is not None:
self._last_log_id = json_data["data"]["log_id"]
except Exception as e:
print(f"Exception in APILogger: {e}")
@property
def success(self) -> bool:
return self._success
@success.setter
def success(self, value: bool):
self._success = value
@property
def last_log_id(self) -> int:
return self._last_log_id