forked from sinaptik-ai/pandas-ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
473 lines (358 loc) · 13.2 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
""" Base class to implement a new LLM
This module is the base class to integrate the various LLMs API. This module also
includes the Base LLM classes for OpenAI and Google PaLM.
Example:
```
from .base import BaseOpenAI
class CustomLLM(BaseOpenAI):
Custom Class Starts here!!
```
"""
from __future__ import annotations
import ast
import re
from abc import abstractmethod
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Tuple, Union
from pandasai.helpers.memory import Memory
from pandasai.prompts.generate_system_message import GenerateSystemMessagePrompt
from ..exceptions import (
APIKeyNotFoundError,
MethodNotImplementedError,
NoCodeFoundError,
)
from ..helpers.openai import is_openai_v1
from ..helpers.openai_info import openai_callback_var
from ..prompts.base import BasePrompt
if TYPE_CHECKING:
from pandasai.pipelines.pipeline_context import PipelineContext
class LLM:
"""Base class to implement a new LLM."""
last_prompt: Optional[str] = None
def is_pandasai_llm(self) -> bool:
"""
Return True if the LLM is from pandasAI.
Returns:
bool: True if the LLM is from pandasAI
"""
return True
@property
def type(self) -> str:
"""
Return type of LLM.
Raises:
APIKeyNotFoundError: Type has not been implemented
Returns:
str: Type of LLM a string
"""
raise APIKeyNotFoundError("Type has not been implemented")
def _polish_code(self, code: str) -> str:
"""
Polish the code by removing the leading "python" or "py", \
removing surrounding '`' characters and removing trailing spaces and new lines.
Args:
code (str): A string of Python code.
Returns:
str: Polished code.
"""
if re.match(r"^(python|py)", code):
code = re.sub(r"^(python|py)", "", code)
if re.match(r"^`.*`$", code):
code = re.sub(r"^`(.*)`$", r"\1", code)
code = code.strip()
return code
def _is_python_code(self, string):
"""
Return True if it is valid python code.
Args:
string (str):
Returns (bool): True if Python Code otherwise False
"""
try:
ast.parse(string)
return True
except SyntaxError:
return False
def _extract_code(self, response: str, separator: str = "```") -> str:
"""
Extract the code from the response.
Args:
response (str): Response
separator (str, optional): Separator. Defaults to "```".
Raises:
NoCodeFoundError: No code found in the response
Returns:
str: Extracted code from the response
"""
code = response
# If separator is in the response then we want the code in between only
if separator in response and len(code.split(separator)) > 1:
code = code.split(separator)[1]
code = self._polish_code(code)
# Even if the separator is not in the response, the output might still be valid python code
if not self._is_python_code(code):
raise NoCodeFoundError("No code found in the response")
return code
def prepend_system_prompt(self, prompt: BasePrompt, memory: Memory):
"""
Append system prompt to the chat prompt, useful when model doesn't have messages for chat history
Args:
prompt (BasePrompt): prompt for chat method
memory (Memory): user conversation history
"""
return self.get_system_prompt(memory) + prompt if memory else prompt
def get_system_prompt(self, memory: Memory) -> Any:
"""
Generate system prompt with agent info and previous conversations
"""
system_prompt = GenerateSystemMessagePrompt(memory=memory)
return system_prompt.to_string()
def get_messages(self, memory: Memory) -> Any:
"""
Return formatted messages
Args:
memory (Memory): Get past Conversation from memory
"""
return memory.get_previous_conversation()
def _extract_tag_text(self, response: str, tag: str) -> str:
"""
Extracts the text between two tags in the response.
Args:
response (str): Response
tag (str): Tag name
Returns:
(str or None): Extracted text from the response
"""
if match := re.search(
f"(<{tag}>)(.*)(</{tag}>)",
response,
re.DOTALL | re.MULTILINE,
):
return match[2]
return None
@abstractmethod
def call(self, instruction: BasePrompt, context: PipelineContext = None) -> str:
"""
Execute the LLM with given prompt.
Args:
instruction (BasePrompt): A prompt object with instruction for LLM.
context (PipelineContext, optional): PipelineContext. Defaults to None.
Raises:
MethodNotImplementedError: Call method has not been implemented
"""
raise MethodNotImplementedError("Call method has not been implemented")
def generate_code(self, instruction: BasePrompt, context: PipelineContext) -> str:
"""
Generate the code based on the instruction and the given prompt.
Args:
instruction (BasePrompt): Prompt with instruction for LLM.
Returns:
str: A string of Python code.
"""
response = self.call(instruction, context)
return self._extract_code(response)
class BaseOpenAI(LLM):
"""Base class to implement a new OpenAI LLM.
LLM base class, this class is extended to be used with OpenAI API.
"""
api_token: str
api_base: str = "https://api.openai.com/v1"
temperature: float = 0
max_tokens: int = 1000
top_p: float = 1
frequency_penalty: float = 0
presence_penalty: float = 0.6
best_of: int = 1
n: int = 1
stop: Optional[str] = None
request_timeout: Union[float, Tuple[float, float], Any, None] = None
max_retries: int = 2
seed: Optional[int] = None
# support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
default_headers: Union[Mapping[str, str], None] = None
default_query: Union[Mapping[str, object], None] = None
# Configure a custom httpx client. See the
# [httpx documentation](https://www.python-httpx.org/api/#client) for more details.
http_client: Union[Any, None] = None
client: Any
_is_chat_model: bool
def _set_params(self, **kwargs):
"""
Set Parameters
Args:
**kwargs: ["model", "deployment_name", "temperature","max_tokens",
"top_p", "frequency_penalty", "presence_penalty", "stop", "seed"]
Returns:
None.
"""
valid_params = [
"model",
"deployment_name",
"temperature",
"max_tokens",
"top_p",
"frequency_penalty",
"presence_penalty",
"stop",
"seed",
]
for key, value in kwargs.items():
if key in valid_params:
setattr(self, key, value)
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
params: Dict[str, Any] = {
"temperature": self.temperature,
"top_p": self.top_p,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"seed": self.seed,
"stop": self.stop,
"n": self.n,
}
if self.max_tokens is not None:
params["max_tokens"] = self.max_tokens
# Azure gpt-35-turbo doesn't support best_of
# don't specify best_of if it is 1
if self.best_of > 1:
params["best_of"] = self.best_of
return params
@property
def _invocation_params(self) -> Dict[str, Any]:
"""Get the parameters used to invoke the model."""
openai_creds: Dict[str, Any] = {}
if not is_openai_v1():
openai_creds |= {
"api_key": self.api_token,
"api_base": self.api_base,
}
return {**openai_creds, **self._default_params}
@property
def _client_params(self) -> Dict[str, any]:
return {
"api_key": self.api_token,
"base_url": self.api_base,
"timeout": self.request_timeout,
"max_retries": self.max_retries,
"default_headers": self.default_headers,
"default_query": self.default_query,
"http_client": self.http_client,
}
def completion(self, prompt: str, memory: Memory) -> str:
"""
Query the completion API
Args:
prompt (str): A string representation of the prompt.
Returns:
str: LLM response.
"""
prompt = self.prepend_system_prompt(prompt, memory)
params = {**self._invocation_params, "prompt": prompt}
if self.stop is not None:
params["stop"] = [self.stop]
response = self.client.create(**params)
if openai_handler := openai_callback_var.get():
openai_handler(response)
self.last_prompt = prompt
return response.choices[0].text
def chat_completion(self, value: str, memory: Memory) -> str:
"""
Query the chat completion API
Args:
value (str): Prompt
Returns:
str: LLM response.
"""
messages = memory.to_openai_messages() if memory else []
# adding current prompt as latest query message
messages.append(
{
"role": "user",
"content": value,
},
)
params = {
**self._invocation_params,
"messages": messages,
}
if self.stop is not None:
params["stop"] = [self.stop]
response = self.client.create(**params)
if openai_handler := openai_callback_var.get():
openai_handler(response)
return response.choices[0].message.content
def call(self, instruction: BasePrompt, context: PipelineContext = None):
"""
Call the OpenAI LLM.
Args:
instruction (BasePrompt): A prompt object with instruction for LLM.
context (PipelineContext): context to pass.
Raises:
UnsupportedModelError: Unsupported model
Returns:
str: Response
"""
self.last_prompt = instruction.to_string()
memory = context.memory if context else None
return (
self.chat_completion(self.last_prompt, memory)
if self._is_chat_model
else self.completion(self.last_prompt, memory)
)
class BaseGoogle(LLM):
"""Base class to implement a new Google LLM
LLM base class is extended to be used with
"""
temperature: Optional[float] = 0
top_p: Optional[float] = 0.8
top_k: Optional[int] = 40
max_output_tokens: Optional[int] = 1000
def _valid_params(self):
return ["temperature", "top_p", "top_k", "max_output_tokens"]
def _set_params(self, **kwargs):
"""
Dynamically set Parameters for the object.
Args:
**kwargs:
Possible keyword arguments: "temperature", "top_p", "top_k",
"max_output_tokens".
Returns:
None.
"""
valid_params = self._valid_params()
for key, value in kwargs.items():
if key in valid_params:
setattr(self, key, value)
def _validate(self):
"""Validates the parameters for Google"""
if self.temperature is not None and not 0 <= self.temperature <= 1:
raise ValueError("temperature must be in the range [0.0, 1.0]")
if self.top_p is not None and not 0 <= self.top_p <= 1:
raise ValueError("top_p must be in the range [0.0, 1.0]")
if self.top_k is not None and not 0 <= self.top_k <= 100:
raise ValueError("top_k must be in the range [0.0, 100.0]")
if self.max_output_tokens is not None and self.max_output_tokens <= 0:
raise ValueError("max_output_tokens must be greater than zero")
@abstractmethod
def _generate_text(self, prompt: str, memory: Optional[Memory] = None) -> str:
"""
Generates text for prompt, specific to implementation.
Args:
prompt (str): A string representation of the prompt.
Returns:
str: LLM response.
"""
raise MethodNotImplementedError("method has not been implemented")
def call(self, instruction: BasePrompt, context: PipelineContext = None) -> str:
"""
Call the Google LLM.
Args:
instruction (BasePrompt): Instruction to pass.
context (PipelineContext): Pass PipelineContext.
Returns:
str: LLM response.
"""
self.last_prompt = instruction.to_string()
memory = context.memory if context else None
return self._generate_text(self.last_prompt, memory)