forked from sinaptik-ai/pandas-ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
298 lines (239 loc) · 8.69 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
"""
A smart dataframe class is a wrapper around the pandas/polars dataframe that allows you
to query it using natural language. It uses the LLMs to generate Python code from
natural language and then executes it on the dataframe.
Example:
```python
from pandasai.smart_dataframe import SmartDataframe
from pandasai.llm.openai import OpenAI
df = pd.read_csv("examples/data/Loan payments data.csv")
llm = OpenAI()
df = SmartDataframe(df, config={"llm": llm})
response = df.chat("What is the average loan amount?")
print(response)
# The average loan amount is $15,000.
```
"""
import uuid
from functools import cached_property
from io import StringIO
from typing import Any, List, Optional, Union
import pandasai.pandas as pd
from pandasai.agent import Agent
from pandasai.connectors.pandas import PandasConnector
from pandasai.helpers.df_validator import DfValidator
from pandasai.pydantic import BaseModel
from ..connectors.base import BaseConnector
from ..helpers.df_info import DataFrameType
from ..helpers.logger import Logger
from ..schemas.df_config import Config
from ..skills import Skill
class SmartDataframe:
_table_name: str
_table_description: str
_custom_head: str = None
_original_import: any
def __init__(
self,
df: Union[DataFrameType, BaseConnector],
name: str = None,
description: str = None,
custom_head: pd.DataFrame = None,
config: Config = None,
):
"""
Args:
df: A supported dataframe type, or a pandasai Connector
name (str, optional): Name of the dataframe. Defaults to None.
description (str, optional): Description of the dataframe. Defaults to "".
custom_head (pd.DataFrame, optional): Sample head of the dataframe.
config (Config, optional): Config to be used. Defaults to None.
"""
self._original_import = df
self._agent = Agent([df], config=config)
self.dataframe = self._agent.context.dfs[0]
self._table_description = description
self._table_name = name
if custom_head is not None:
self._custom_head = custom_head.to_csv(index=False)
def load_dfs(self, df, name: str, description: str, custom_head: pd.DataFrame):
if isinstance(df, (pd.DataFrame, pd.Series, list, dict, str)):
df = PandasConnector(
{"original_df": df},
name=name,
description=description,
custom_head=custom_head,
)
else:
try:
import polars as pl
if isinstance(df, pl.DataFrame):
from ..connectors.polars import PolarsConnector
df = PolarsConnector(
{"original_df": df},
name=name,
description=description,
custom_head=custom_head,
)
else:
raise ValueError(
"Invalid input data. We cannot convert it to a dataframe."
)
except ImportError as e:
raise ValueError(
"Invalid input data. We cannot convert it to a dataframe."
) from e
return df
def add_skills(self, *skills: Skill):
"""
Add Skills to PandasAI
"""
self._agent.add_skills(*skills)
def chat(self, query: str, output_type: Optional[str] = None):
"""
Run a query on the dataframe.
Args:
query (str): Query to run on the dataframe
output_type (Optional[str]): Add a hint for LLM of which
type should be returned by `analyze_data()` in generated
code. Possible values: "number", "dataframe", "plot", "string":
* number - specifies that user expects to get a number
as a response object
* dataframe - specifies that user expects to get
pandas/modin/polars dataframe as a response object
* plot - specifies that user expects LLM to build
a plot
* string - specifies that user expects to get text
as a response object
Raises:
ValueError: If the query is empty
"""
return self._agent.chat(query, output_type)
def validate(self, schema: BaseModel):
"""
Validates Dataframe rows on the basis Pydantic schema input
(Args):
schema: Pydantic schema class
verbose: Print Errors
"""
df_validator = DfValidator(self.dataframe)
return df_validator.validate(schema)
@cached_property
def head_df(self):
"""
Get the head of the dataframe as a dataframe.
Returns:
DataFrameType: Pandas, Modin or Polars dataframe
"""
return self.dataframe.get_head()
@cached_property
def head_csv(self):
"""
Get the head of the dataframe as a CSV string.
Returns:
str: CSV string
"""
df_head = self.dataframe.get_head()
return df_head.to_csv(index=False)
@property
def last_prompt(self):
return self._agent.last_prompt
@property
def last_prompt_id(self) -> uuid.UUID:
return self._agent.last_prompt_id
@property
def last_code_generated(self):
return self._agent.last_code_executed
@property
def last_code_executed(self):
return self._agent.last_code_executed
def original_import(self):
return self._original_import
@property
def logger(self):
return self._agent.logger
@logger.setter
def logger(self, logger: Logger):
self._agent.logger = logger
@property
def logs(self):
return self._agent.context.config.logs
@property
def verbose(self):
return self._agent.context.config.verbose
@verbose.setter
def verbose(self, verbose: bool):
self._agent.context.config.verbose = verbose
@property
def save_logs(self):
return self._agent.context.config.save_logs
@save_logs.setter
def save_logs(self, save_logs: bool):
self._agent.context.config.save_logs = save_logs
@property
def enforce_privacy(self):
return self._agent.context.config.enforce_privacy
@enforce_privacy.setter
def enforce_privacy(self, enforce_privacy: bool):
self._agent.context.config.enforce_privacy = enforce_privacy
@property
def enable_cache(self):
return self._agent.context.config.enable_cache
@enable_cache.setter
def enable_cache(self, enable_cache: bool):
self._agent.context.config.enable_cache = enable_cache
@property
def save_charts(self):
return self._agent.context.config.save_charts
@save_charts.setter
def save_charts(self, save_charts: bool):
self._agent.context.config.save_charts = save_charts
@property
def save_charts_path(self):
return self._agent.context.config.save_charts_path
@save_charts_path.setter
def save_charts_path(self, save_charts_path: str):
self._agent.context.config.save_charts_path = save_charts_path
@property
def table_name(self):
return self._table_name
@property
def table_description(self):
return self._table_description
@property
def custom_head(self):
data = StringIO(self._custom_head)
return pd.read_csv(data)
@property
def last_query_log_id(self):
return self._agent.last_query_log_id
def __len__(self):
return len(self.dataframe)
def __eq__(self, other):
return self.dataframe.equals(other.dataframe)
def __getattr__(self, name):
if name in self._core.__dir__():
return getattr(self._core, name)
elif name in self.dataframe.__dir__():
return getattr(self.dataframe, name)
else:
return self.__getattribute__(name)
def __getitem__(self, key):
return self.dataframe.__getitem__(key)
def __setitem__(self, key, value):
return self.dataframe.__setitem__(key, value)
def load_smartdataframes(
dfs: List[Union[DataFrameType, Any]], config: Config
) -> List[SmartDataframe]:
"""
Load all the dataframes to be used in the smart datalake.
Args:
dfs (List[Union[DataFrameType, Any]]): List of dataframes to be used
"""
smart_dfs = []
for df in dfs:
if not isinstance(df, SmartDataframe):
smart_dfs.append(SmartDataframe(df, config=config))
else:
smart_dfs.append(df)
return smart_dfs