forked from zddhub/opensse
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquantizer.cpp
111 lines (90 loc) · 4.06 KB
/
quantizer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/*************************************************************************
* Copyright (c) 2014 Zhang Dongdong
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
**************************************************************************/
#include "quantizer.h"
namespace sse {
//Quantize one image
void quantize(const Features_t &features, const Vocabularys_t &vocabulary,
Vec_f32_t &vf, Quantizer_fn &quantizer)
{
Vocabularys_t quantized_samples;
quantize_samples_parallel(features, vocabulary, quantized_samples, quantizer);
build_histvw(quantized_samples, vocabulary.size(), vf, false);
}
void quantize_samples_parallel(const Features_t &samples, const Vocabularys_t &vocabulary,
Vocabularys_t &quantized_samples, Quantizer_fn &quantizer)
{
quantized_samples.resize(samples.size());
//for each word compute distances to each entry in the vocabulary ...
#pragma omp parallel for
for(uint i = 0; i < samples.size(); i++) {
quantizer(samples[i], vocabulary, quantized_samples[i]);
}
}
void build_histvw(const Vocabularys_t &quantized_samples, uint vocabulary_size, Vec_f32_t &histvw,
bool normalize, const KeyPoints_t &keypoints, int res)
{
assert(res > 0);
assert(vocabulary_size > 0);
if(res > 1) {
assert(keypoints.size() == quantized_samples.size());
}
//size_t vocabularySize = quantized_features[0].size();
// length of the vector is number of cells x histogram length
// i.e. it actually stores one histogram per cell
histvw.resize(res*res*vocabulary_size, 0);
for(uint i = 0; i < quantized_samples.size(); i++) {
assert(quantized_samples[i].size() == vocabulary_size);
// in the case of res = 1, offset will be zero and
// we only have a single histogram (no pyramid) and
// thus the offset into this overall histogram will be zero
int offset = 0;
// ----------------------------------------------------------------
// Special path for building a spatial pyramid
//
// If the user has chosen res = 1 we do not care about the content
// of the positions vector as they are only accessed for res > 1
if(res > 1) {
int x = static_cast<int>(keypoints[i][0] * res);
int y = static_cast<int>(keypoints[i][1] * res);
if(x == res) x--;
if(y == res) y--;
// generate a linear index from 2D (x,y) index
int idx = y*res + x;
assert (idx >= 0 && idx < res*res);
// identify the spatial histogram we want to add to
offset = vocabulary_size*idx;
}
// -----------------------------------------------------------------
// Build up histogram by adding the quantized feature to the
// intermediate histogram. Offset defines the spatial bin we add into
for(uint j = 0; j < vocabulary_size; j++) {
histvw[offset+j] += quantized_samples[i][j];
}
}
// for the soft features we should normalize by the number of samples
// but we do not really want that for the hard quantized features...
// follow the approach by Chatterfield et al.
// The second check is to avoid division by zero. In case an empty quantized_features
// vector is passed in, the result will be an all zero histogram
if(normalize && quantized_samples.size() > 0) {
uint numSamples = quantized_samples.size();
for(uint i = 0; i < histvw.size(); i++) {
histvw[i] /= numSamples;
}
}
}
}