forked from mozilla/DeepSpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimport_ts.py
executable file
·214 lines (183 loc) · 7.59 KB
/
import_ts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#!/usr/bin/env python3
import csv
import os
import re
import subprocess
import zipfile
from multiprocessing import Pool
import progressbar
import sox
import unidecode
from deepspeech_training.util.downloader import SIMPLE_BAR, maybe_download
from deepspeech_training.util.importers import (
get_counter,
get_imported_samples,
get_importers_parser,
get_validate_label,
print_import_report,
)
FIELDNAMES = ["wav_filename", "wav_filesize", "transcript"]
SAMPLE_RATE = 16000
MAX_SECS = 15
ARCHIVE_NAME = "2019-04-11_fr_FR"
ARCHIVE_DIR_NAME = "ts_" + ARCHIVE_NAME
ARCHIVE_URL = (
"https://deepspeech-storage-mirror.s3.fr-par.scw.cloud/" + ARCHIVE_NAME + ".zip"
)
def _download_and_preprocess_data(target_dir, english_compatible=False):
# Making path absolute
target_dir = os.path.abspath(target_dir)
# Conditionally download data
archive_path = maybe_download(
"ts_" + ARCHIVE_NAME + ".zip", target_dir, ARCHIVE_URL
)
# Conditionally extract archive data
_maybe_extract(target_dir, ARCHIVE_DIR_NAME, archive_path)
# Conditionally convert TrainingSpeech data to DeepSpeech CSVs and wav
_maybe_convert_sets(
target_dir, ARCHIVE_DIR_NAME, english_compatible=english_compatible
)
def _maybe_extract(target_dir, extracted_data, archive_path):
# If target_dir/extracted_data does not exist, extract archive in target_dir
extracted_path = os.path.join(target_dir, extracted_data)
if not os.path.exists(extracted_path):
print('No directory "%s" - extracting archive...' % extracted_path)
if not os.path.isdir(extracted_path):
os.mkdir(extracted_path)
with zipfile.ZipFile(archive_path) as zip_f:
zip_f.extractall(extracted_path)
else:
print('Found directory "%s" - not extracting it from archive.' % archive_path)
def one_sample(sample):
""" Take a audio file, and optionally convert it to 16kHz WAV """
orig_filename = sample["path"]
# Storing wav files next to the wav ones - just with a different suffix
wav_filename = os.path.splitext(orig_filename)[0] + ".converted.wav"
_maybe_convert_wav(orig_filename, wav_filename)
file_size = -1
frames = 0
if os.path.exists(wav_filename):
file_size = os.path.getsize(wav_filename)
frames = int(
subprocess.check_output(
["soxi", "-s", wav_filename], stderr=subprocess.STDOUT
)
)
label = sample["text"]
rows = []
# Keep track of how many samples are good vs. problematic
counter = get_counter()
if file_size == -1:
# Excluding samples that failed upon conversion
counter["failed"] += 1
elif label is None:
# Excluding samples that failed on label validation
counter["invalid_label"] += 1
elif int(frames / SAMPLE_RATE * 1000 / 10 / 2) < len(str(label)):
# Excluding samples that are too short to fit the transcript
counter["too_short"] += 1
elif frames / SAMPLE_RATE > MAX_SECS:
# Excluding very long samples to keep a reasonable batch-size
counter["too_long"] += 1
else:
# This one is good - keep it for the target CSV
rows.append((wav_filename, file_size, label))
counter["imported_time"] += frames
counter["all"] += 1
counter["total_time"] += frames
return (counter, rows)
def _maybe_convert_sets(target_dir, extracted_data, english_compatible=False):
extracted_dir = os.path.join(target_dir, extracted_data)
# override existing CSV with normalized one
target_csv_template = os.path.join(target_dir, "ts_" + ARCHIVE_NAME + "_{}.csv")
if os.path.isfile(target_csv_template):
return
path_to_original_csv = os.path.join(extracted_dir, "data.csv")
with open(path_to_original_csv) as csv_f:
data = [
d
for d in csv.DictReader(csv_f, delimiter=",")
if float(d["duration"]) <= MAX_SECS
]
for line in data:
line["path"] = os.path.join(extracted_dir, line["path"])
num_samples = len(data)
rows = []
counter = get_counter()
print("Importing {} wav files...".format(num_samples))
pool = Pool()
bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
for i, processed in enumerate(pool.imap_unordered(one_sample, data), start=1):
counter += processed[0]
rows += processed[1]
bar.update(i)
bar.update(num_samples)
pool.close()
pool.join()
with open(target_csv_template.format("train"), "w", encoding="utf-8", newline="") as train_csv_file: # 80%
with open(target_csv_template.format("dev"), "w", encoding="utf-8", newline="") as dev_csv_file: # 10%
with open(target_csv_template.format("test"), "w", encoding="utf-8", newline="") as test_csv_file: # 10%
train_writer = csv.DictWriter(train_csv_file, fieldnames=FIELDNAMES)
train_writer.writeheader()
dev_writer = csv.DictWriter(dev_csv_file, fieldnames=FIELDNAMES)
dev_writer.writeheader()
test_writer = csv.DictWriter(test_csv_file, fieldnames=FIELDNAMES)
test_writer.writeheader()
for i, item in enumerate(rows):
transcript = validate_label(
cleanup_transcript(
item[2], english_compatible=english_compatible
)
)
if not transcript:
continue
wav_filename = os.path.join(target_dir, extracted_data, item[0])
i_mod = i % 10
if i_mod == 0:
writer = test_writer
elif i_mod == 1:
writer = dev_writer
else:
writer = train_writer
writer.writerow(
dict(
wav_filename=wav_filename,
wav_filesize=os.path.getsize(wav_filename),
transcript=transcript,
)
)
imported_samples = get_imported_samples(counter)
assert counter["all"] == num_samples
assert len(rows) == imported_samples
print_import_report(counter, SAMPLE_RATE, MAX_SECS)
def _maybe_convert_wav(orig_filename, wav_filename):
if not os.path.exists(wav_filename):
transformer = sox.Transformer()
transformer.convert(samplerate=SAMPLE_RATE)
try:
transformer.build(orig_filename, wav_filename)
except sox.core.SoxError as ex:
print("SoX processing error", ex, orig_filename, wav_filename)
PUNCTUATIONS_REG = re.compile(r"[°\-,;!?.()\[\]*…—]")
MULTIPLE_SPACES_REG = re.compile(r"\s{2,}")
def cleanup_transcript(text, english_compatible=False):
text = text.replace("’", "'").replace("\u00A0", " ")
text = PUNCTUATIONS_REG.sub(" ", text)
text = MULTIPLE_SPACES_REG.sub(" ", text)
if english_compatible:
text = unidecode.unidecode(text)
return text.strip().lower()
def handle_args():
parser = get_importers_parser(description="Importer for TrainingSpeech dataset.")
parser.add_argument(dest="target_dir")
parser.add_argument(
"--english-compatible",
action="store_true",
dest="english_compatible",
help="Remove diactrics and other non-ascii chars.",
)
return parser.parse_args()
if __name__ == "__main__":
cli_args = handle_args()
validate_label = get_validate_label(cli_args)
_download_and_preprocess_data(cli_args.target_dir, cli_args.english_compatible)