forked from influxdata/kapacitor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
combine.go
313 lines (290 loc) · 7.56 KB
/
combine.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
package kapacitor
import (
"fmt"
"log"
"sort"
"time"
"github.com/influxdata/kapacitor/models"
"github.com/influxdata/kapacitor/pipeline"
"github.com/influxdata/kapacitor/tick/stateful"
)
type CombineNode struct {
node
c *pipeline.CombineNode
expressions []stateful.Expression
expressionsByGroup map[models.GroupID][]stateful.Expression
scopePools []stateful.ScopePool
combination combination
}
// Create a new CombineNode, which combines a stream with itself dynamically.
func newCombineNode(et *ExecutingTask, n *pipeline.CombineNode, l *log.Logger) (*CombineNode, error) {
cn := &CombineNode{
c: n,
node: node{Node: n, et: et, logger: l},
expressionsByGroup: make(map[models.GroupID][]stateful.Expression),
combination: combination{max: n.Max},
}
// Create stateful expressions
cn.expressions = make([]stateful.Expression, len(n.Lambdas))
cn.scopePools = make([]stateful.ScopePool, len(n.Lambdas))
for i, lambda := range n.Lambdas {
statefulExpr, err := stateful.NewExpression(lambda.Expression)
if err != nil {
return nil, fmt.Errorf("Failed to compile %v expression: %v", i, err)
}
cn.expressions[i] = statefulExpr
cn.scopePools[i] = stateful.NewScopePool(stateful.FindReferenceVariables(lambda.Expression))
}
cn.node.runF = cn.runCombine
return cn, nil
}
type buffer struct {
Time time.Time
Name string
Group models.GroupID
Dimensions models.Dimensions
Points []rawPoint
}
type timeList []time.Time
func (t timeList) Len() int { return len(t) }
func (t timeList) Less(i, j int) bool { return t[i].Before(t[j]) }
func (t timeList) Swap(i, j int) { t[i], t[j] = t[j], t[i] }
func (n *CombineNode) runCombine([]byte) error {
switch n.Wants() {
case pipeline.StreamEdge:
buffers := make(map[models.GroupID]*buffer)
for p, ok := n.ins[0].NextPoint(); ok; p, ok = n.ins[0].NextPoint() {
n.timer.Start()
t := p.Time.Round(n.c.Tolerance)
currentBuf, ok := buffers[p.Group]
if !ok {
currentBuf = &buffer{
Time: t,
Name: p.Name,
Group: p.Group,
Dimensions: p.Dimensions,
}
buffers[p.Group] = currentBuf
}
rp := rawPoint{
Time: t,
Fields: p.Fields,
Tags: p.Tags,
}
if t.Equal(currentBuf.Time) {
currentBuf.Points = append(currentBuf.Points, rp)
} else {
if err := n.combineBuffer(currentBuf); err != nil {
return err
}
currentBuf.Time = t
currentBuf.Name = p.Name
currentBuf.Group = p.Group
currentBuf.Dimensions = p.Dimensions
currentBuf.Points = currentBuf.Points[0:1]
currentBuf.Points[0] = rp
}
n.timer.Stop()
}
case pipeline.BatchEdge:
allBuffers := make(map[models.GroupID]map[time.Time]*buffer)
groupTimes := make(map[models.GroupID]time.Time)
for b, ok := n.ins[0].NextBatch(); ok; b, ok = n.ins[0].NextBatch() {
n.timer.Start()
t := b.TMax.Round(n.c.Tolerance)
buffers, ok := allBuffers[b.Group]
if !ok {
buffers = make(map[time.Time]*buffer)
allBuffers[b.Group] = buffers
groupTimes[b.Group] = t
}
groupTime := groupTimes[b.Group]
if !t.Equal(groupTime) {
// Set new groupTime
groupTimes[b.Group] = t
// Combine/Emit all old buffers
times := make(timeList, 0, len(buffers))
for t := range buffers {
times = append(times, t)
}
sort.Sort(times)
for _, t := range times {
if err := n.combineBuffer(buffers[t]); err != nil {
return err
}
delete(buffers, t)
}
}
for _, p := range b.Points {
t := p.Time.Round(n.c.Tolerance)
currentBuf, ok := buffers[t]
if !ok {
currentBuf = &buffer{
Time: t,
Name: b.Name,
Group: b.Group,
Dimensions: b.PointDimensions(),
}
buffers[t] = currentBuf
}
currentBuf.Points = append(currentBuf.Points, rawPoint{
Time: t,
Fields: p.Fields,
Tags: p.Tags,
})
}
n.timer.Stop()
}
}
return nil
}
// Simple container for point data.
type rawPoint struct {
Time time.Time
Fields models.Fields
Tags models.Tags
}
// Combine a set of points into all their combinations.
func (n *CombineNode) combineBuffer(buf *buffer) error {
if len(buf.Points) == 0 {
return nil
}
l := len(n.expressions)
expressions, ok := n.expressionsByGroup[buf.Group]
if !ok {
expressions = make([]stateful.Expression, l)
for i, expr := range n.expressions {
expressions[i] = expr.CopyReset()
}
n.expressionsByGroup[buf.Group] = expressions
}
// Compute matching result for all points
matches := make([]map[int]bool, l)
for i := 0; i < l; i++ {
matches[i] = make(map[int]bool, len(buf.Points))
}
for idx, p := range buf.Points {
for i := range expressions {
matched, err := EvalPredicate(expressions[i], n.scopePools[i], p.Time, p.Fields, p.Tags)
if err != nil {
n.logger.Println("E! evaluating lambda expression:", err)
}
matches[i][idx] = matched
}
}
p := models.Point{
Name: buf.Name,
Group: buf.Group,
Dimensions: buf.Dimensions,
}
dimensions := p.Dimensions.ToSet()
set := make([]rawPoint, l)
return n.combination.Do(len(buf.Points), l, func(indices []int) error {
valid := true
for s := 0; s < l; s++ {
found := false
for i := range indices {
if matches[s][indices[i]] {
set[s] = buf.Points[indices[i]]
indices = append(indices[0:i], indices[i+1:]...)
found = true
break
}
}
if !found {
valid = false
break
}
}
if valid {
rp := n.merge(set, dimensions)
p.Time = rp.Time.Round(n.c.Tolerance)
p.Fields = rp.Fields
p.Tags = rp.Tags
n.timer.Pause()
for _, out := range n.outs {
err := out.CollectPoint(p)
if err != nil {
return err
}
}
n.timer.Resume()
}
return nil
})
}
// Merge a set of points into a single point.
func (n *CombineNode) merge(points []rawPoint, dimensions map[string]bool) rawPoint {
fields := make(models.Fields, len(points[0].Fields)*len(points))
tags := make(models.Tags, len(points[0].Tags)*len(points))
for i, p := range points {
for field, value := range p.Fields {
fields[n.c.Names[i]+n.c.Delimiter+field] = value
}
for tag, value := range p.Tags {
if !dimensions[tag] {
tags[n.c.Names[i]+n.c.Delimiter+tag] = value
} else {
tags[tag] = value
}
}
}
return rawPoint{
Time: points[0].Time,
Fields: fields,
Tags: tags,
}
}
// Type for performing actions on a set of combinations.
type combination struct {
max int64
}
// Do action for each combination, based on combinatorial logic n choose k.
// If n choose k > max an error is returned
func (c combination) Do(n, k int, f func(indices []int) error) error {
if count := c.Count(int64(n), int64(k)); count > c.max {
return fmt.Errorf("refusing to perform combination as total combinations %d exceeds max combinations %d", count, c.max)
} else if count == -1 {
// Nothing to do
return nil
}
indices := make([]int, k)
indicesCopy := make([]int, k)
for i := 0; i < k; i++ {
indices[i] = i
}
copy(indicesCopy, indices)
if err := f(indicesCopy); err != nil {
return err
}
for {
i := k - 1
for ; i >= 0; i-- {
if indices[i] != i+n-k {
break
}
}
if i == -1 {
return nil
}
indices[i]++
for j := i + 1; j < k; j++ {
indices[j] = indices[j-1] + 1
}
copy(indicesCopy, indices)
if err := f(indicesCopy); err != nil {
return err
}
}
}
// Count the number of possible combinations of n choose k.
func (c combination) Count(n, k int64) int64 {
if n < k {
return -1
}
count := int64(1)
for i := int64(0); i < k; i++ {
count = (count * (n - i)) / (i + 1)
}
return count
}