-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.pl
173 lines (137 loc) · 4.75 KB
/
test.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Before `make install' is performed this script should be runnable with
# `make test'. After `make install' it should work as `perl test.pl'
#########################
# change 'tests => 1' to 'tests => last_test_to_print';
use Test;
BEGIN { plan tests => 1 };
use Algorithm::SVM::DataSet;
use Algorithm::SVM;
ok(1); # If we made it this far, we're ok.
#########################
# Insert your test code below, the Test module is use()ed here so read
# its man page ( perldoc Test ) for help writing this test script.
print("Creating new Algorithm::SVM\n");
my $svm = new Algorithm::SVM(Model => 'sample.model');
ok(ref($svm) ne "", 1);
print("Creating new Algorithm::SVM::DataSet objects\n");
my $ds1 = new Algorithm::SVM::DataSet(Label => 1);
my $ds2 = new Algorithm::SVM::DataSet(Label => 2);
my $ds3 = new Algorithm::SVM::DataSet(Label => 3);
ok(ref($ds1) ne "", 1);
ok(ref($ds2) ne "", 1);
ok(ref($ds3) ne "", 1);
print("Adding attributes to Algorithm::SVM::DataSet objects\n");
my @d1 = (0.0424107142857143, 0.0915178571428571, 0.0401785714285714,
0.0156250000000000, 0.0156250000000000, 0.0223214285714286,
0.0223214285714286, 0.0825892857142857, 0.1205357142857140,
0.0736607142857143, 0.0535714285714286, 0.0535714285714286,
0.0178571428571429, 0.0357142857142857, 0.1116071428571430,
0.0334821428571429, 0.0223214285714286, 0.0602678571428571,
0.0200892857142857, 0.0647321428571429);
my @d2 = (0.0673076923076923, 0.11538461538461500, 0.0480769230769231,
0.0480769230769231, 0.00961538461538462, 0.0192307692307692,
0.0000000000000000, 0.08653846153846150, 0.1634615384615380,
0.0865384615384615, 0.03846153846153850, 0.0288461538461538,
0.0192307692307692, 0.01923076923076920, 0.0000000000000000,
0.0961538461538462, 0.02884615384615380, 0.0673076923076923,
0.0288461538461538, 0.02884615384615380);
my @d3 = (0.0756756756756757, 0.0594594594594595, 0.0378378378378378,
0.0216216216216216, 0.0432432432432432, 0.0000000000000000,
0.0162162162162162, 0.0648648648648649, 0.1729729729729730,
0.0432432432432432, 0.0864864864864865, 0.1297297297297300,
0.0108108108108108, 0.0108108108108108, 0.0162162162162162,
0.0486486486486487, 0.0324324324324324, 0.0216216216216216,
0.0594594594594595, 0.0486486486486487);
$ds1->attribute($_, $d1[$_ - 1]) for(1..scalar(@d1));
$ds2->attribute($_, $d2[$_ - 1]) for(1..scalar(@d2));
$ds3->attribute($_, $d3[$_ - 1]) for(1..scalar(@d3));
ok(1);
print("Checking predictions on loaded model\n");
ok($svm->predict($ds1) == 10,1);
ok($svm->predict($ds2) == 0,1);
ok($svm->predict($ds3) == -10,1);
print("Saving model\n");
ok($svm->save('sample.model.1'), 1);
print("Loading saved model\n");
ok($svm->load('sample.model.1'), 1);
print("Checking NRClass\n");
ok($svm->getNRClass(), 3);
print("Checking model labels\n");
ok($svm->getLabels(), (10, 0, -10));
my $cnt=0;
for (my $i=1; $i<=@d1; $i++) {
if ($ds1->attribute($i) == $d1[$i-1]) {
$cnt++;
}
}
ok($cnt,20);
print("Checking train\n");
my @tset=($ds1,$ds2,$ds3);
ok($svm->train(@tset));
$cnt=0;
for (my $i=1; $i<=@d1; $i++) {
if ($ds1->attribute($i) == $d1[$i-1]) {
$cnt++;
}
}
ok($cnt,20);
print("Checking retrain\n");
my $p1 = $svm->predict($ds1);
my $p2 = $svm->predict($ds2);
my $p3 = $svm->predict($ds3);
ok($svm->retrain());
ok($svm->predict($ds1),$p1);
ok($svm->predict($ds2),$p2);
ok($svm->predict($ds3),$p3);
print("Checking retrain after DataSet changes\n");
# this tests whether reallocating memory after realign
# works ok.
$ds1->attribute(2,$ds1->attribute(2));
$ds2->attribute(2,$ds2->attribute(2));
$ds3->attribute(2,$ds3->attribute(2));
ok($svm->retrain());
ok($svm->predict($ds1),$p1);
ok($svm->predict($ds2),$p2);
ok($svm->predict($ds3),$p3);
print("Checking svm destructor\n");
$svm=undef; # destroy svm object (test destructor)
ok(1);
print("Checking attribute value changes\n");
$ds1->attribute($_, 1) for(1..scalar(@d1));
$cnt=0;
for ($i=1;$i<=scalar(@d1);$i++) {
if ($ds1->attribute($i)==1) { $cnt++; } else { print $ds1->attribute($i),"::\n"; }
}
ok($cnt,20);
$ds2->attribute(3, -1.5);
$ds2->attribute(5, -1.5);
$ds2->attribute(4, -1.5);
$ds2->attribute(2, -1.5);
$ds2->attribute(1, -1.5);
$cnt=0;
for ($i=1;$i<=5;$i++) {
if ($ds2->attribute($i)==-1.5) { $cnt++; }
}
for ($i=6;$i<=scalar(@d2);$i++) {
if ($ds2->attribute($i)==$d2[$i-1]) { $cnt++; }
}
ok($cnt,20);
$ds3->attribute($_, 0) for(1..scalar(@d3));
$cnt=0;
for ($i=1;$i<=scalar(@d3);$i++) {
if ($ds3->attribute($i)==0) { $cnt++; }
}
ok($cnt,20);
print("Checking asArray\n");
my @x = $ds2->asArray();
# note that this takes attr. 0 as first value, which has never
# been set and thus is equal to zero
$cnt=0;
if ($x[0]==0.0) { $cnt++; }
for ($i=1;$i<=5;$i++) {
if ($x[$i]==-1.5) { $cnt++; }
}
for ($i=6;$i<=scalar(@d2);$i++) {
if ($x[$i]==$d2[$i-1]) { $cnt++; }
}
ok($cnt,21);