-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy patheval.py
198 lines (158 loc) · 7.16 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
from torch import nn, Tensor
from typing import Dict
import numpy as np
from tqdm.auto import tqdm
class EnsembleCalculator(nn.Module):
def __init__(self, *models, out_keys=('energy', 'charges')):
super().__init__()
self.add_module('models', nn.ModuleList(models))
self.out_keys = out_keys
def forward(self, data: Dict[str, Tensor]) -> Dict[str, Tensor]:
# alpha and beta total charge
data['charge'] = 0.5 * torch.stack([data['charge'] - data['mult'] + 1, data['charge'] + data['mult'] - 1], dim=-1)
outputs = dict((k, []) for k in self.out_keys)
for model in self.models:
o = model(data)
for k in self.out_keys:
outputs[k].append(o[k][-1])
result = dict()
for k in self.out_keys:
v = torch.stack(outputs[k], dim=0)
result[k] = v.mean(dim=0)
result[k + '_std'] = v.std(dim=0)
return result
def load_models(files):
models = [torch.jit.load(f) for f in files]
return EnsembleCalculator(*models)
def to_device(data, device):
for k in data:
data[k] = data[k].to(device)
return data
def to_tensors(data):
for k in data:
data[k] = torch.tensor(data[k])
return data
def to_numpy(data):
for k in data:
if isinstance(data[k], Tensor):
data[k] = data[k].detach().cpu().numpy()
return data
def eval_batched(model, data, batchsize=128, in_keys=('coord', 'numbers', 'charge', 'mult'), output_device='cpu'):
assert set(data.keys()).issubset(in_keys), 'Not all the required data are provided!'
device = next(model.parameters()).device
data = to_device(data, device)
l = data[in_keys[0]].shape[0]
batch_idx = torch.arange(l, device=device).split(batchsize)
outputs = list()
for idx in tqdm(batch_idx, leave=False):
o = model(dict((k, v[idx]) for k, v in data.items()))
outputs.append(to_device(o, output_device))
ret = dict()
for k in outputs[0].keys():
ret[k] = torch.cat([o[k] for o in outputs], dim=0)
return ret
def _delta_prp(batch, charges=(0, 1), props=('energy', 'charges')):
mol_ids = batch['mol_id']
charge = batch['charge'] if batch['charge'].ndim == 1 else batch['charge'].sum(-1)
w_chg0 = charge == charges[0]
w_chg1 = charge == charges[1]
mol_ids, idx0, idx1 = np.intersect1d(mol_ids[w_chg0], mol_ids[w_chg1], return_indices=True)
return [np.array(batch[p][w_chg0][idx0] - batch[p][w_chg1][idx1]) for p in props], mol_ids
def calc_prp(batch, energy_key='energy', charges_key='charges'):
ret = dict()
ret['mol_id'] = np.unique(batch['mol_id'])
m, n = ret['mol_id'].shape[0], batch[charges_key].shape[1]
for k in ('ip', 'ea', 'chi', 'eta', 'omega'):
ret[k] = np.zeros((m, )) * np.nan
for k in ('f_el', 'f_nuc', 'f_rad', 'omega_el', 'omega_nuc', 'omega_rad'):
ret[k] = np.zeros((m, n)) * np.nan
(ip, f_el), ids_ip = _delta_prp(batch, charges=(1, 0), props=(energy_key, charges_key))
f_el = - f_el
_, idx0, idx1 = np.intersect1d(ret['mol_id'], ids_ip, return_indices=True)
ret['ip'][idx0] = ip[idx1]
ret['f_el'][idx0] = - f_el[idx1]
(ea, f_nuc), ids_ea = _delta_prp(batch, charges=(0, -1), props=(energy_key, charges_key))
_, idx0, idx1 = np.intersect1d(ret['mol_id'], ids_ea, return_indices=True)
ret['ea'][idx0] = ea[idx1]
ret['f_nuc'][idx0] = - f_nuc[idx1]
ret['chi'] = 0.5 * (ret['ip'] + ret['ea'])
ret['eta'] = 0.5 * (ret['ip'] - ret['ea'])
ret['omega'] = (ret['chi'] ** 2) / (2 * ret['eta'])
ret['f_rad'] = 0.5 * (ret['f_el'] + ret['f_nuc'])
ret['omega_el'] = ret['f_el'] * ret['omega'][:, None]
ret['omega_nuc'] = ret['f_nuc'] * ret['omega'][:, None]
ret['omega_rad'] = ret['f_rad'] * ret['omega'][:, None]
return ret
def rmse(x, y):
return ((x - y) ** 2).mean() ** 0.5
def mad(x, y):
return np.abs(x - y).mean()
def merge_prp(prp_true, prp_pred, keys):
d = dict()
w = ~np.isnan(prp_true[keys[0]])
ids, idx0, idx1 = np.intersect1d(prp_pred['mol_id'], prp_true['mol_id'][w], return_indices=True)
for k in keys:
d[k] = prp_pred[k][idx0]
d[k + '_pred'] = prp_true[k][w][idx1]
d['mol_id'] = ids
return d
def print_errors(data, keys):
for key in keys:
_true = np.concatenate([d[key].flatten() for d in data])
_pred = np.concatenate([d[key + '_pred'].flatten() for d in data])
_rmse, _mad = rmse(_true, _pred), mad(_true, _pred)
print(f'{key}: Data points {len(_true)} RMSE {_rmse:.3g} MAD {_mad:.3g}')
if __name__ == '__main__':
import h5py
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('h5file')
parser.add_argument('models', nargs='+')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = load_models(args.models).to(device)
# properties for all molecules (energy, charges)
data_all = list()
# properties for neutral-anion pairs (ea, f_nuc)
data_ea = list()
# properties for neutral-cation pairs (ip, f_el)
data_ip = list()
# properties for neutral-cation-anion (chi, eta, omega, f_rad, omega_el, omega_nuc, omega_rad)
data_ea_ip = list()
# iterate groups in data file
_n = 0
with h5py.File(args.h5file, 'r') as f:
for group_name in tqdm(f):
g = f[group_name]
_n += g['numbers'].shape[0]
data = dict((k, v[()]) for k, v in g.items())
data['charges'] = data['charges'].sum(-1) # merge alpha and beta atomic charges
# make predictions
# input should be Dict[str, Tensor] containing these keys:
X = dict((k, data[k]) for k in ('coord', 'numbers', 'charge', 'mult'))
X = to_tensors(X)
# disable optimizations for safety. with some combinations of pytorch/cuda it's getting very slow
with torch.jit.optimized_execution(False), torch.no_grad():
Y = eval_batched(model, X)
Y['charges'] = Y['charges'].sum(-1) # merge alpha and beta atomic charges
Y = to_numpy(Y)
Y['mol_id'] = data['mol_id']
Y['charge'] = data['charge']
# save predictions with '_pred' suffix
for k in ('energy', 'charges'):
data[k + '_pred'] = Y[k]
data_all.append(data)
# compute ip, ea, etc.
prp_true = calc_prp(data)
prp_pred = calc_prp(Y)
# since not all molecules (conformers) have all three charge states successfully calculated,
# will match by mol_id and write only those
data_ea.append(merge_prp(prp_true, prp_pred, ('ea', 'f_nuc')))
data_ip.append(merge_prp(prp_true, prp_pred, ('ip', 'f_el')))
data_ea_ip.append(merge_prp(prp_true, prp_pred, ('chi', 'eta', 'omega', 'f_rad', 'omega_el', 'omega_nuc', 'omega_rad')))
print('Prediction errors [eV and e-]:')
print_errors(data_all, ('energy', 'charges'))
print_errors(data_ea, ('ea', 'f_nuc'))
print_errors(data_ip, ('ip', 'f_el'))
print_errors(data_ea_ip, ('chi', 'eta', 'omega', 'f_rad', 'omega_el', 'omega_nuc', 'omega_rad'))