forked from BlackHandLYH/MaskDetect-YOLOv4-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolo_training.py
507 lines (437 loc) · 20.7 KB
/
yolo_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
from random import shuffle
import numpy as np
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
from PIL import Image
from utils.utils import bbox_iou, merge_bboxes
#---------------------------------------------------#
# 平滑标签
#---------------------------------------------------#
def smooth_labels(y_true, label_smoothing,num_classes):
return y_true * (1.0 - label_smoothing) + label_smoothing / num_classes
def box_ciou(b1, b2):
"""
输入为:
----------
b1: tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh
b2: tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh
返回为:
-------
ciou: tensor, shape=(batch, feat_w, feat_h, anchor_num, 1)
"""
# 求出预测框左上角右下角
b1_xy = b1[..., :2]
b1_wh = b1[..., 2:4]
b1_wh_half = b1_wh/2.
b1_mins = b1_xy - b1_wh_half
b1_maxes = b1_xy + b1_wh_half
# 求出真实框左上角右下角
b2_xy = b2[..., :2]
b2_wh = b2[..., 2:4]
b2_wh_half = b2_wh/2.
b2_mins = b2_xy - b2_wh_half
b2_maxes = b2_xy + b2_wh_half
# 求真实框和预测框所有的iou
intersect_mins = torch.max(b1_mins, b2_mins)
intersect_maxes = torch.min(b1_maxes, b2_maxes)
intersect_wh = torch.max(intersect_maxes - intersect_mins, torch.zeros_like(intersect_maxes))
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
b1_area = b1_wh[..., 0] * b1_wh[..., 1]
b2_area = b2_wh[..., 0] * b2_wh[..., 1]
union_area = b1_area + b2_area - intersect_area
iou = intersect_area / torch.clamp(union_area,min = 1e-6)
# 计算中心的差距
center_distance = torch.sum(torch.pow((b1_xy - b2_xy), 2), axis=-1)
# 找到包裹两个框的最小框的左上角和右下角
enclose_mins = torch.min(b1_mins, b2_mins)
enclose_maxes = torch.max(b1_maxes, b2_maxes)
enclose_wh = torch.max(enclose_maxes - enclose_mins, torch.zeros_like(intersect_maxes))
# 计算对角线距离
enclose_diagonal = torch.sum(torch.pow(enclose_wh,2), axis=-1)
ciou = iou - 1.0 * (center_distance) / torch.clamp(enclose_diagonal,min = 1e-6)
v = (4 / (math.pi ** 2)) * torch.pow((torch.atan(b1_wh[..., 0]/torch.clamp(b1_wh[..., 1],min = 1e-6)) - torch.atan(b2_wh[..., 0]/torch.clamp(b2_wh[..., 1],min = 1e-6))), 2)
alpha = v / torch.clamp((1.0 - iou + v),min=1e-6)
ciou = ciou - alpha * v
return ciou
def clip_by_tensor(t,t_min,t_max):
t=t.float()
result = (t >= t_min).float() * t + (t < t_min).float() * t_min
result = (result <= t_max).float() * result + (result > t_max).float() * t_max
return result
def MSELoss(pred,target):
return (pred-target)**2
def BCELoss(pred,target):
epsilon = 1e-7
pred = clip_by_tensor(pred, epsilon, 1.0 - epsilon)
output = -target * torch.log(pred) - (1.0 - target) * torch.log(1.0 - pred)
return output
class YOLOLoss(nn.Module):
def __init__(self, anchors, num_classes, img_size, label_smooth=0, cuda=True):
super(YOLOLoss, self).__init__()
self.anchors = anchors
self.num_anchors = len(anchors)
self.num_classes = num_classes
self.bbox_attrs = 5 + num_classes
self.img_size = img_size
self.feature_length = [img_size[0]//32,img_size[0]//16,img_size[0]//8]
self.label_smooth = label_smooth
self.ignore_threshold = 0.5
self.lambda_conf = 1.0
self.lambda_cls = 1.0
self.lambda_loc = 1.0
self.cuda = cuda
def forward(self, input, targets=None):
# input为bs,3*(5+num_classes),13,13
# 一共多少张图片
bs = input.size(0)
# 特征层的高
in_h = input.size(2)
# 特征层的宽
in_w = input.size(3)
# 计算步长
# 每一个特征点对应原来的图片上多少个像素点
# 如果特征层为13x13的话,一个特征点就对应原来的图片上的32个像素点
stride_h = self.img_size[1] / in_h
stride_w = self.img_size[0] / in_w
# 把先验框的尺寸调整成特征层大小的形式
# 计算出先验框在特征层上对应的宽高
scaled_anchors = [(a_w / stride_w, a_h / stride_h) for a_w, a_h in self.anchors]
# bs,3*(5+num_classes),13,13 -> bs,3,13,13,(5+num_classes)
prediction = input.view(bs, int(self.num_anchors/3),
self.bbox_attrs, in_h, in_w).permute(0, 1, 3, 4, 2).contiguous()
# 对prediction预测进行调整
conf = torch.sigmoid(prediction[..., 4]) # Conf
pred_cls = torch.sigmoid(prediction[..., 5:]) # Cls pred.
# 找到哪些先验框内部包含物体
mask, noobj_mask, t_box, tconf, tcls, box_loss_scale_x, box_loss_scale_y = self.get_target(targets, scaled_anchors,in_w, in_h,self.ignore_threshold)
noobj_mask, pred_boxes_for_ciou = self.get_ignore(prediction, targets, scaled_anchors, in_w, in_h, noobj_mask)
if self.cuda:
mask, noobj_mask = mask.cuda(), noobj_mask.cuda()
box_loss_scale_x, box_loss_scale_y= box_loss_scale_x.cuda(), box_loss_scale_y.cuda()
tconf, tcls = tconf.cuda(), tcls.cuda()
pred_boxes_for_ciou = pred_boxes_for_ciou.cuda()
t_box = t_box.cuda()
box_loss_scale = 2-box_loss_scale_x*box_loss_scale_y
# losses.
ciou = (1 - box_ciou( pred_boxes_for_ciou[mask.bool()], t_box[mask.bool()]))* box_loss_scale[mask.bool()]
loss_loc = torch.sum(ciou / bs)
loss_conf = torch.sum(BCELoss(conf, mask) * mask / bs) + \
torch.sum(BCELoss(conf, mask) * noobj_mask / bs)
# print(smooth_labels(tcls[mask == 1],self.label_smooth,self.num_classes))
loss_cls = torch.sum(BCELoss(pred_cls[mask == 1], smooth_labels(tcls[mask == 1],self.label_smooth,self.num_classes))/bs)
# print(loss_loc,loss_conf,loss_cls)
loss = loss_conf * self.lambda_conf + loss_cls * self.lambda_cls + loss_loc * self.lambda_loc
return loss, loss_conf.item(), loss_cls.item(), loss_loc.item()
def get_target(self, target, anchors, in_w, in_h, ignore_threshold):
# 计算一共有多少张图片
bs = len(target)
# 获得先验框
anchor_index = [[0,1,2],[3,4,5],[6,7,8]][self.feature_length.index(in_w)]
subtract_index = [0,3,6][self.feature_length.index(in_w)]
# 创建全是0或者全是1的阵列
mask = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
noobj_mask = torch.ones(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
tx = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
ty = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
tw = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
th = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
t_box = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, 4, requires_grad=False)
tconf = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
tcls = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, self.num_classes, requires_grad=False)
box_loss_scale_x = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
box_loss_scale_y = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
for b in range(bs):
for t in range(target[b].shape[0]):
# 计算出在特征层上的点位
gx = target[b][t, 0] * in_w
gy = target[b][t, 1] * in_h
gw = target[b][t, 2] * in_w
gh = target[b][t, 3] * in_h
# 计算出属于哪个网格
gi = int(gx)
gj = int(gy)
# 计算真实框的位置
gt_box = torch.FloatTensor(np.array([0, 0, gw, gh])).unsqueeze(0)
# 计算出所有先验框的位置
anchor_shapes = torch.FloatTensor(np.concatenate((np.zeros((self.num_anchors, 2)),
np.array(anchors)), 1))
# 计算重合程度
anch_ious = bbox_iou(gt_box, anchor_shapes)
# Find the best matching anchor box
best_n = np.argmax(anch_ious)
if best_n not in anchor_index:
continue
# Masks
if (gj < in_h) and (gi < in_w):
best_n = best_n - subtract_index
# 判定哪些先验框内部真实的存在物体
noobj_mask[b, best_n, gj, gi] = 0
mask[b, best_n, gj, gi] = 1
# 计算先验框中心调整参数
tx[b, best_n, gj, gi] = gx
ty[b, best_n, gj, gi] = gy
# 计算先验框宽高调整参数
tw[b, best_n, gj, gi] = gw
th[b, best_n, gj, gi] = gh
# 用于获得xywh的比例
box_loss_scale_x[b, best_n, gj, gi] = target[b][t, 2]
box_loss_scale_y[b, best_n, gj, gi] = target[b][t, 3]
# 物体置信度
tconf[b, best_n, gj, gi] = 1
# 种类
tcls[b, best_n, gj, gi, int(target[b][t, 4])] = 1
else:
print('Step {0} out of bound'.format(b))
print('gj: {0}, height: {1} | gi: {2}, width: {3}'.format(gj, in_h, gi, in_w))
continue
t_box[...,0] = tx
t_box[...,1] = ty
t_box[...,2] = tw
t_box[...,3] = th
return mask, noobj_mask, t_box, tconf, tcls, box_loss_scale_x, box_loss_scale_y
def get_ignore(self,prediction,target,scaled_anchors,in_w, in_h,noobj_mask):
bs = len(target)
anchor_index = [[0,1,2],[3,4,5],[6,7,8]][self.feature_length.index(in_w)]
scaled_anchors = np.array(scaled_anchors)[anchor_index]
# 先验框的中心位置的调整参数
x = torch.sigmoid(prediction[..., 0])
y = torch.sigmoid(prediction[..., 1])
# 先验框的宽高调整参数
w = prediction[..., 2] # Width
h = prediction[..., 3] # Height
FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor
# 生成网格,先验框中心,网格左上角
grid_x = torch.linspace(0, in_w - 1, in_w).repeat(in_w, 1).repeat(
int(bs*self.num_anchors/3), 1, 1).view(x.shape).type(FloatTensor)
grid_y = torch.linspace(0, in_h - 1, in_h).repeat(in_h, 1).t().repeat(
int(bs*self.num_anchors/3), 1, 1).view(y.shape).type(FloatTensor)
# 生成先验框的宽高
anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0]))
anchor_h = FloatTensor(scaled_anchors).index_select(1, LongTensor([1]))
anchor_w = anchor_w.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(w.shape)
anchor_h = anchor_h.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(h.shape)
# 计算调整后的先验框中心与宽高
pred_boxes = FloatTensor(prediction[..., :4].shape)
pred_boxes[..., 0] = x + grid_x
pred_boxes[..., 1] = y + grid_y
pred_boxes[..., 2] = torch.exp(w) * anchor_w
pred_boxes[..., 3] = torch.exp(h) * anchor_h
for i in range(bs):
pred_boxes_for_ignore = pred_boxes[i]
pred_boxes_for_ignore = pred_boxes_for_ignore.view(-1, 4)
for t in range(target[i].shape[0]):
gx = target[i][t, 0] * in_w
gy = target[i][t, 1] * in_h
gw = target[i][t, 2] * in_w
gh = target[i][t, 3] * in_h
gt_box = torch.FloatTensor(np.array([gx, gy, gw, gh])).unsqueeze(0).type(FloatTensor)
anch_ious = bbox_iou(gt_box, pred_boxes_for_ignore, x1y1x2y2=False)
anch_ious = anch_ious.view(pred_boxes[i].size()[:3])
noobj_mask[i][anch_ious>self.ignore_threshold] = 0
return noobj_mask, pred_boxes
def rand(a=0, b=1):
return np.random.rand()*(b-a) + a
class Generator(object):
def __init__(self,batch_size,
train_lines, image_size,
):
self.batch_size = batch_size
self.train_lines = train_lines
self.train_batches = len(train_lines)
self.image_size = image_size
def get_random_data(self, annotation_line, input_shape, jitter=.3, hue=.1, sat=1.5, val=1.5):
'''r实时数据增强的随机预处理'''
line = annotation_line.split()
image = Image.open(line[0])
iw, ih = image.size
h, w = input_shape
box = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]])
# resize image
new_ar = w/h * rand(1-jitter,1+jitter)/rand(1-jitter,1+jitter)
scale = rand(.25, 2)
if new_ar < 1:
nh = int(scale*h)
nw = int(nh*new_ar)
else:
nw = int(scale*w)
nh = int(nw/new_ar)
image = image.resize((nw,nh), Image.BICUBIC)
# place image
dx = int(rand(0, w-nw))
dy = int(rand(0, h-nh))
new_image = Image.new('RGB', (w,h), (128,128,128))
new_image.paste(image, (dx, dy))
image = new_image
# flip image or not
flip = rand()<.5
if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT)
# distort image
hue = rand(-hue, hue)
sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat)
val = rand(1, val) if rand()<.5 else 1/rand(1, val)
x = rgb_to_hsv(np.array(image)/255.)
x[..., 0] += hue
x[..., 0][x[..., 0]>1] -= 1
x[..., 0][x[..., 0]<0] += 1
x[..., 1] *= sat
x[..., 2] *= val
x[x>1] = 1
x[x<0] = 0
image_data = hsv_to_rgb(x)*255 # numpy array, 0 to 1
# correct boxes
box_data = np.zeros((len(box),5))
if len(box)>0:
np.random.shuffle(box)
box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx
box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy
if flip: box[:, [0,2]] = w - box[:, [2,0]]
box[:, 0:2][box[:, 0:2]<0] = 0
box[:, 2][box[:, 2]>w] = w
box[:, 3][box[:, 3]>h] = h
box_w = box[:, 2] - box[:, 0]
box_h = box[:, 3] - box[:, 1]
box = box[np.logical_and(box_w>1, box_h>1)] # discard invalid box
box_data = np.zeros((len(box),5))
box_data[:len(box)] = box
if len(box) == 0:
return image_data, []
if (box_data[:,:4]>0).any():
return image_data, box_data
else:
return image_data, []
def get_random_data_with_Mosaic(self, annotation_line, input_shape, hue=.1, sat=1.5, val=1.5):
'''random preprocessing for real-time data augmentation'''
h, w = input_shape
min_offset_x = 0.4
min_offset_y = 0.4
scale_low = 1-min(min_offset_x,min_offset_y)
scale_high = scale_low+0.2
image_datas = []
box_datas = []
index = 0
place_x = [0,0,int(w*min_offset_x),int(w*min_offset_x)]
place_y = [0,int(h*min_offset_y),int(w*min_offset_y),0]
for line in annotation_line:
# 每一行进行分割
line_content = line.split()
# 打开图片
image = Image.open(line_content[0])
image = image.convert("RGB")
# 图片的大小
iw, ih = image.size
# 保存框的位置
box = np.array([np.array(list(map(int,box.split(',')))) for box in line_content[1:]])
# 是否翻转图片
flip = rand()<.5
if flip and len(box)>0:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
box[:, [0,2]] = iw - box[:, [2,0]]
# 对输入进来的图片进行缩放
new_ar = w/h
scale = rand(scale_low, scale_high)
if new_ar < 1:
nh = int(scale*h)
nw = int(nh*new_ar)
else:
nw = int(scale*w)
nh = int(nw/new_ar)
image = image.resize((nw,nh), Image.BICUBIC)
# 进行色域变换
hue = rand(-hue, hue)
sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat)
val = rand(1, val) if rand()<.5 else 1/rand(1, val)
x = rgb_to_hsv(np.array(image)/255.)
x[..., 0] += hue
x[..., 0][x[..., 0]>1] -= 1
x[..., 0][x[..., 0]<0] += 1
x[..., 1] *= sat
x[..., 2] *= val
x[x>1] = 1
x[x<0] = 0
image = hsv_to_rgb(x)
image = Image.fromarray((image*255).astype(np.uint8))
# 将图片进行放置,分别对应四张分割图片的位置
dx = place_x[index]
dy = place_y[index]
new_image = Image.new('RGB', (w,h), (128,128,128))
new_image.paste(image, (dx, dy))
image_data = np.array(new_image)
index = index + 1
box_data = []
# 对box进行重新处理
if len(box)>0:
np.random.shuffle(box)
box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx
box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy
box[:, 0:2][box[:, 0:2]<0] = 0
box[:, 2][box[:, 2]>w] = w
box[:, 3][box[:, 3]>h] = h
box_w = box[:, 2] - box[:, 0]
box_h = box[:, 3] - box[:, 1]
box = box[np.logical_and(box_w>1, box_h>1)]
box_data = np.zeros((len(box),5))
box_data[:len(box)] = box
image_datas.append(image_data)
box_datas.append(box_data)
# 将图片分割,放在一起
cutx = np.random.randint(int(w*min_offset_x), int(w*(1 - min_offset_x)))
cuty = np.random.randint(int(h*min_offset_y), int(h*(1 - min_offset_y)))
new_image = np.zeros([h,w,3])
new_image[:cuty, :cutx, :] = image_datas[0][:cuty, :cutx, :]
new_image[cuty:, :cutx, :] = image_datas[1][cuty:, :cutx, :]
new_image[cuty:, cutx:, :] = image_datas[2][cuty:, cutx:, :]
new_image[:cuty, cutx:, :] = image_datas[3][:cuty, cutx:, :]
# 对框进行进一步的处理
new_boxes = np.array(merge_bboxes(box_datas, cutx, cuty))
if len(new_boxes) == 0:
return new_image, []
if (new_boxes[:,:4]>0).any():
return new_image, new_boxes
else:
return new_image, []
def generate(self, train = True, mosaic = True):
while True:
shuffle(self.train_lines)
lines = self.train_lines
inputs = []
targets = []
flag = True
n = len(lines)
for i in range(len(lines)):
if mosaic == True:
if flag and (i+4) < n:
img,y = self.get_random_data_with_Mosaic(lines[i:i+4], self.image_size[0:2])
i = (i+4) % n
else:
img,y = self.get_random_data(lines[i], self.image_size[0:2])
i = (i+1) % n
flag = bool(1-flag)
else:
img,y = self.get_random_data(lines[i], self.image_size[0:2])
i = (i+1) % n
if len(y)==0:
continue
boxes = np.array(y[:,:4],dtype=np.float32)
boxes[:,0] = boxes[:,0]/self.image_size[1]
boxes[:,1] = boxes[:,1]/self.image_size[0]
boxes[:,2] = boxes[:,2]/self.image_size[1]
boxes[:,3] = boxes[:,3]/self.image_size[0]
boxes = np.maximum(np.minimum(boxes,1),0)
boxes[:,2] = boxes[:,2] - boxes[:,0]
boxes[:,3] = boxes[:,3] - boxes[:,1]
boxes[:,0] = boxes[:,0] + boxes[:,2]/2
boxes[:,1] = boxes[:,1] + boxes[:,3]/2
y = np.concatenate([boxes,y[:,-1:]],axis=-1)
img = np.array(img,dtype = np.float32)
inputs.append(np.transpose(img/255.0,(2,0,1)))
targets.append(y)
if len(targets) == self.batch_size:
tmp_inp = np.array(inputs)
tmp_targets = np.array(targets)
inputs = []
targets = []
yield tmp_inp, tmp_targets